Midterm Exam No. 01 (2022 Fall)
 PHYS 205B: UNIVERSITY PHYSICS
 School of Physics and Applied Physics, Southern Illinois University-Carbondale Date: 2022 Sep 15

(Name)
(Signature)

Instructions

1. Seating direction: Please be seated on seats with seat-numbers divisible by 2 .
2. Total time $=75$ minutes.
3. There are 4 conceptual questions and 4 problems in this exam.
4. Equation sheet is provided separately.
5. To be considered for partial credit you need to show your work in detail and organize it clearly.
6. A simple calculator (with trigonometric functions) is allowed.
7. Use of mobile phones is strictly prohibited. It should stay out of reach during the exam.
8. (5 points.) Four identical conducting spheres A, B, C, and D carry positive charges $Q_{A}=+1.0 \mu \mathrm{C}, Q_{B}=+2.0 \mu \mathrm{C}, Q_{C}=+3.0 \mu \mathrm{C}, Q_{D}=+4.0 \mu \mathrm{C}$. See Figure 1. In Move 1 they are separated by a distance much larger than their diameters and placed along a line. In Move 2 they are brought closer such that adjacent spheres touch. In Move 3 they are separated by a distance much larger than their diameters. As a result, what are the charges on A, B, C, and D.
Move 1:
(A)
(B)
(C)
(D)

Move 2:
(A) $(B)(D$

Move 3:
(A)
(B)

(D)

Figure 1: Problem 1
2. (5 points.) A total charge Q is placed on a conductor that has the shape of a torus (doughnut). What is the electric field inside the conducting torus?
3. (5 points.) A positive charge $q=+1.0 \mathrm{nC}$ is positioned on the y axis at $y=+2.0 \mathrm{~cm}$. Determine the magnitude of the electric field due to this charge on the x axis at $x=$ +2.0 cm .
4. (5 points.) A spherical thin conducting shell of radius a has a positive charge $+Q$ on it. Another concentric spherical thin conducting shell of radius $b>a$ has a negative charge $-Q$ on it. The two shells Draw the electric field lines for this configuration. The diagram should illustrate the magnitude and direction of the field everywhere.

Figure 2: Problem 4
5. (10 points.) Four identical charges of equal magnitude q are placed at the corners of a square of side L. Determine the magnitude of the Coulomb force on one of the charges.
6. ($\mathbf{1 0}$ points.) Two charges, $q_{1}=+1.00 \mu \mathrm{C}$ and $q_{2}=-9.00 \mu \mathrm{C}$ are $D=10.0 \mathrm{~cm}$ apart. Refer Figure 3. Where on the line passing through the two charges is the total electric field zero?

Figure 3: Problem 6
7. (10 points.) An electron and a proton are released from rest in a uniform electric field. The particles accelerate at a_{e} and a_{p}. Determine the ratio a_{e} / a_{p}.
8. ($\mathbf{1 0}$ points.) Consider a thin spherical shell of radius 11.0 cm with a total charge of $25 \mu \mathrm{C}$ distributed uniformly on its surface. Find the electric field 10.0 cm from the center of the charge distribution.

