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1. (20 points.) Not available in preview mode.
2. (20 points.) Not available in preview mode.

3. (20 points.) Polynomials (a-r)! of degree [ satisfy the Laplacian when a is a null-vector,
that is,

(a-a)=0. (1)
(a) Show that
Via-r)=1(-1)(a-r)"?(a-a), (2)
and conclude
Vi(a-r) =0. (3)

(b) Write the polynomial construction in the form
(a-r) =rl(a ). (4)

Observe that (a - #)! has no radial dependence. Thus, in this form, the radial and
angular dependence is separated. Starting from the Laplacian in spherical polar

coordinates,
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Thus, derive the differential equation for the generating function
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(d) Use the generating function
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4. (20 points.) An example of a null-vector is
a=(—icosa,—isina,1). (12)

(a) Identify the corresponding y. to show that, now, 1, in the generating function is

e_im(a_%)
Yim = U+ mI(—m) (13)

(b) Then, integrate to derive an integral representation for spherical harmonics,
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(¢) By setting m = 0 derive the corresponding integral representation for Legendre

polynomial P;(cos6):
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5. (20 points.) For a null-vector a, that satisfies
a-a=0, (16)

the polynomial (a - #)! of degree [ is the generating function of spherical harmonics
Yim(0,¢). To derive the orthonormality properties of spherical harmonics let us con-
sider the product of two generating functions, with null-vectors a and a*, integrated over
all the angles,

/dQ (- )(a- 1), (17)

where

dQ = sin 0dOd . (18)
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(a)

After integration over the angles the product of the two generating functions is a
scalar. Thus, it has to be constructed out of (a-a), (a*-a*), and (a* - a). Since
(a-a) =0 and (a*-a*) = 0, the integral has to be constructed out of (a* - a). This
is possible only if [ = I'. Together, we conclude

/dQ (a* - #)(a-1t)" = dp(a* - a)'Cy, (19)

in terms of arbitrary constant Cj.

To determine C; choose
a=(1,i,0). (20)

For this choice of null-vector, evaluate a* = (1, —i,0), (a- 1) = sinfe®, (a* - t) =
sinfe~* and (a* -a) = 2. Thus, find
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after substituting cosf = t. Evaluate
Cy = 4m. (22)

Integrate by parts in the integral for C) to derive the recurrence relation
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Thus, conclude
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Using the generating function
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show that
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Thus, comparing the two sides of the equality, read out the orthonormality condition
for the spherical harmonics,
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