Homework No. 02 (Fall 2022)
 PHYS 500A: MATHEMATICAL METHODS
 School of Physics and Applied Physics, Southern Illinois University-Carbondale Due date: Friday, 2022 Sep 9, 4.30pm

1. ($\mathbf{2 0}$ points.) Verify the following identities:

$$
\begin{align*}
\nabla r & =\frac{\mathbf{r}}{r}=\hat{\mathbf{r}}, \tag{1a}\\
\boldsymbol{\nabla} \mathbf{r} & =\mathbf{1} . \tag{1b}
\end{align*}
$$

Further, show that

$$
\begin{array}{r}
\boldsymbol{\nabla} \cdot \mathbf{r}=3 \\
\boldsymbol{\nabla} \times \mathbf{r}=0 . \tag{2b}
\end{array}
$$

Here r is the magnitude of the position vector \mathbf{r}, and $\hat{\mathbf{r}}$ is the unit vector pointing in the direction of \mathbf{r}.
2. (20 points.) Evaluate the left hand side of the equation

$$
\begin{equation*}
\boldsymbol{\nabla}(\mathbf{r} \cdot \mathbf{p})=a \mathbf{p}+b \mathbf{r} \tag{3}
\end{equation*}
$$

where \mathbf{p} is a constant vector. Thus, find a and b.
3. (20 points.) Evaluate

$$
\begin{equation*}
\boldsymbol{\nabla} \cdot\left(\frac{\mathbf{r}}{r^{3}}\right) \tag{4}
\end{equation*}
$$

everywhere in space, including $\mathbf{r}=0$.
Hint: Check your answer for consistency by using divergence theorem.
4. (20 points.) Consider the distribution

$$
\begin{equation*}
\delta(x)=\lim _{\varepsilon \rightarrow 0} \frac{1}{\pi} \frac{\varepsilon}{x^{2}+\varepsilon^{2}} \tag{5}
\end{equation*}
$$

Show that

$$
\delta(x)\left\{\begin{array}{lll}
\rightarrow \infty, & \text { if } & x=0 \tag{6}\\
\rightarrow 0, & \text { if } & x \neq 0
\end{array}\right.
$$

Further, show that

$$
\begin{equation*}
\int_{-\infty}^{\infty} d x \delta(x)=1 \tag{7}
\end{equation*}
$$

Plot $\delta(x)$ before taking the limit $\varepsilon \rightarrow 0$ and identify ε in the plot.
5. (20 points.) Consider the distribution

$$
\begin{equation*}
\delta(x)=\lim _{\sigma \rightarrow 0} \frac{1}{\sqrt{2 \pi \sigma}} e^{-\frac{x^{2}}{2 \sigma}} . \tag{8}
\end{equation*}
$$

Show that

$$
\delta(x)\left\{\begin{array}{lll}
\rightarrow \infty, & \text { if } & x=0 \tag{9}\\
\rightarrow 0, & \text { if } & x \neq 0
\end{array}\right.
$$

Further, show that

$$
\begin{equation*}
\int_{-\infty}^{\infty} d x \delta(x)=1 \tag{10}
\end{equation*}
$$

Plot $\delta(x)$ before taking the limit $\varepsilon \rightarrow 0$ and identify ε in the plot.

