Homework No. 11 (Fall 2022)

PHYS 500A: MATHEMATICAL METHODS
School of Physics and Applied Physics, Southern Illinois University-Carbondale Due date: Friday, 2022 Dec 9, 4.30pm

1. (20 points.) Generate 3 D plots of surface spherical harmonics $Y_{l m}(\theta, \phi)$ as a function of θ and ϕ. In particular,
(a) Plot $\operatorname{Re}\left[Y_{73}(\theta, \phi)\right]$.
(b) Plot $\operatorname{Im}\left[Y_{73}(\theta, \phi)\right]$.
(c) Plot $\operatorname{Abs}\left[Y_{73}(\theta, \phi)\right]$.
(d) Plot your favourite spherical harmonic, that is, choose a l and m, and Re or Im or Abs.

Hint: In Mathematica these plots are generated using the following commands:
SphericalPlot3D[Re[SphericalHarmonicY[l,m, $\theta, \phi]$], $\{\theta, 0, \mathrm{Pi}\},\{\phi, 0,2 \mathrm{Pi}\}]$
SphericalPlot3D[Im[SphericalHarmonicY[l,m, $\theta, \phi]],\{\theta, 0, \mathrm{Pi}\},\{\phi, 0,2 \mathrm{Pi}\}]$
SphericalPlot3D[Abs [SphericalHarmonicY[1,m, $\theta, \phi]$], $\{\theta, 0, \mathrm{Pi}\},\{\phi, 0,2 \mathrm{Pi}\}]$
Refer to diagrams in Wikipedia article on 'spherical harmonics' to see some visual representations of these functions.
2. (20 points.) Using the definition of spherical harmonics

$$
\begin{equation*}
Y_{l m}(\theta, \phi)=e^{i m \phi} \sqrt{\frac{2 l+1}{4 \pi}} \sqrt{\frac{(l+m)!}{(l-m)!}} \frac{1}{(\sin \theta)^{m}}\left(\frac{d}{d \cos \theta}\right)^{l-m} \frac{\left(\cos ^{2} \theta-1\right)^{l}}{2^{l} l!} \tag{1}
\end{equation*}
$$

evaluate the explicit expressions for $Y_{21}(\theta, \phi)$ and $Y_{2,-2}(\theta, \phi)$.
3. ($\mathbf{2 0}$ points.) Verify that the right hand side of

$$
\begin{equation*}
(-\mathbf{a} \cdot \nabla) \frac{1}{r}=\frac{\mathbf{a} \cdot \mathbf{r}}{r^{3}} \tag{2}
\end{equation*}
$$

is a solution to Laplace's equation for $\mathbf{r} \neq 0$. Further, verify the relation

$$
\begin{equation*}
\left(\mathbf{a}_{1} \cdot \boldsymbol{\nabla}\right)\left(\mathbf{a}_{2} \cdot \boldsymbol{\nabla}\right) \frac{1}{r}=\frac{1}{r^{5}}\left[3\left(\mathbf{a}_{1} \cdot \mathbf{r}\right)\left(\mathbf{a}_{2} \cdot \mathbf{r}\right)-\left(\mathbf{a}_{1} \cdot \mathbf{a}_{2}\right) r^{2}\right], \tag{3}
\end{equation*}
$$

which is also a solution to Laplace's equation for $\mathbf{r} \neq 0$, but need not be verified here.
4. (10 points.) The generating function for the spherical harmonics, $Y_{l m}(\theta, \phi)$, is

$$
\begin{equation*}
\frac{1}{l!}\left(\mathbf{a} \cdot \frac{\mathbf{r}}{r}\right)^{l}=\sum_{m=-l}^{l} \sqrt{\frac{4 \pi}{2 l+1}} Y_{l m}(\theta, \phi) \psi_{l m} \tag{4}
\end{equation*}
$$

where the left hand side is expressed in terms of

$$
\begin{align*}
& \mathbf{r}=r(\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta) \tag{5}\\
& \mathbf{a}=\frac{1}{2}\left(y_{-}^{2}-y_{+}^{2},-i y_{-}^{2}-i y_{+}^{2}, 2 y_{-} y_{+}\right) \tag{6}
\end{align*}
$$

and the right hand side consists of

$$
\begin{equation*}
\psi_{l m}=\frac{y_{+}^{l+m}}{\sqrt{(l+m)!}} \frac{y_{-}^{l-m}}{\sqrt{(l-m)!}} \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
Y_{l m}(\theta, \phi)=e^{i m \phi} \sqrt{\frac{2 l+1}{4 \pi}} \sqrt{\frac{(l+m)!}{(l-m)!}} \frac{1}{(\sin \theta)^{m}}\left(\frac{d}{d \cos \theta}\right)^{l-m} \frac{\left(\cos ^{2} \theta-1\right)^{l}}{2^{l} l!} \tag{8}
\end{equation*}
$$

Show that

$$
\begin{equation*}
\left(\mathbf{a} \cdot \frac{\mathbf{r}}{r}\right) \tag{9}
\end{equation*}
$$

is unchanged by the substitution: $y_{+} \leftrightarrow y_{-}, \theta \rightarrow-\theta, \phi \rightarrow-\phi$. Thus, show that

$$
\begin{equation*}
Y_{l m}(\theta, \phi)=Y_{l,-m}(-\theta,-\phi) \tag{10}
\end{equation*}
$$

5. (20 points.) Legendre polynomials of order l is given by (for $|t|<1$)

$$
\begin{equation*}
P_{l}(t)=\left(\frac{d}{d t}\right)^{l} \frac{\left(t^{2}-1\right)^{l}}{2^{l} l!} \tag{11}
\end{equation*}
$$

(a) Write down the explicit forms of the Legendre polynomials $P_{l}(t)$ for $l=0,1,2,3$, by completing the l differentiations in Eq. (11).
(b) Show that the spherical harmonics for $m=0$ involves the Legendre polynomials,

$$
\begin{equation*}
Y_{l 0}(\theta, \phi)=\sqrt{\frac{2 l+1}{4 \pi}} P_{l}(\cos \theta) \tag{12}
\end{equation*}
$$

(c) Using the orthonormality condition for the spherical harmonics

$$
\begin{equation*}
\int d \Omega Y_{l m}^{*}(\theta, \phi) Y_{l^{\prime} m^{\prime}}(\theta, \phi)=\delta_{l l^{\prime}} \delta_{m m^{\prime}} \tag{13}
\end{equation*}
$$

recognize the orthogonality statement for Legendre polynomials,

$$
\begin{equation*}
\frac{1}{2} \int_{-1}^{1} d t P_{l}(t) P_{l^{\prime}}(t)=\frac{\delta_{l l^{\prime}}}{2 l+1} \tag{14}
\end{equation*}
$$

Use

$$
\begin{equation*}
P_{0}(t)=1, \quad P_{1}(t)=t, \quad P_{2}(t)=\frac{3}{2} t^{2}-\frac{1}{2} \tag{15}
\end{equation*}
$$

to check this explicitly for $l, l^{\prime}=0,1,2$.

