Homework No. 11 (Fall 2022)

PHYS 500A: MATHEMATICAL METHODS

School of Physics and Applied Physics, Southern Illinois University—Carbondale
Due date: Friday, 2022 Dec 9, 4.30pm

1. (20 points.) Generate 3D plots of surface spherical harmonics Y;,,(0, ¢) as a function of
0 and ¢. In particular,
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Plot Re[Y75(6, ¢)].
Plot Im[Y75(6, ¢)].
Plot Abs[Y73(0, ¢)].

Plot your favourite spherical harmonic, that is, choose a [ and m, and Re or Im or

Abs.

—_—~ N
~— — ~— ~—

—

Hint: In Mathematica these plots are generated using the following commands:
SphericalPlot3D[Re [SphericalHarmonicY[1,m,0,¢$]],{0,0,Pi},{ ¢,0,2 Pi}]
SphericalPlot3D[Im[SphericalHarmonicY[1,m,0,¢$]],{0,0,Pi},{ ¢,0,2 Pi}]
SphericalPlot3D[Abs [SphericalHarmonicY[1,m,f0,$]],{6,0,Pi},{ ¢,0,2 Pi}]
Refer to diagrams in Wikipedia article on ‘spherical harmonics’ to see some visual repre-
sentations of these functions.

2. (20 points.) Using the definition of spherical harmonics
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evaluate the explicit expressions for Y51 (6, ¢) and Y (6, ¢).

3. (20 points.) Verify that the right hand side of
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is a solution to Laplace’s equation for r # 0. Further, verify the relation
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which is also a solution to Laplace’s equation for r # 0, but need not be verified here.



4. (10 points.) The generating function for the spherical harmonics, Y, (6, ¢), is
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where the left hand side is expressed in terms of

r = r(sin f cos ¢, sin  sin ¢, cos ),
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Show that
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is unchanged by the substitution: y, <> y_, 8 — —0, ¢ — —¢. Thus, show that
Yim(0,¢) = Yi, (=0, —0).
5. (20 points.) Legendre polynomials of order [ is given by (for |t| < 1)
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(a) Write down the explicit forms of the Legendre polynomials P;(t) for [ =0, 1,2,3, by

completing the [ differentiations in Eq. (11).

(b) Show that the spherical harmonics for m = 0 involves the Legendre polynomials,
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(¢) Using the orthonormality condition for the spherical harmonics
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recognize the orthogonality statement for Legendre polynomials,
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Yi0(0,0) = Py(cosf).

Use 5
Py(t)=1, P(t)=t, DPyt)= §t2 —

to check this explicitly for [,1' = 0,1, 2.
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