Homework No. 01 (Fall 2023)
 PHYS 205A-002: UNIVERSITY PHYSICS
 School of Physics and Applied Physics, Southern Illinois University-Carbondale
 Due date: Monday, 2023 Aug 28, 2:00 PM, on D2L

Instructions

- You are encouraged to use any of the resources to complete this homework. However, the extent to which you depend on resources while doing this homework is a measure of how much extra work you need to put in to master the associated concepts. Solutions should be the last resource.
- Describe your thought process in detail and organize it clearly. Make sure your answer has units and the right number of significant digits.
- After completion, scan the pages as a single PDF file, and submit the file on D2L (under Assesments \rightarrow Assignments).

Problems

1. ($\mathbf{1 0}$ points.) The corners of a square lie on a circle of radius R. Find the area of the square as a function of R.

Solution

2. (10 points.) What can you deduce about the physical quantity c in the famous equation

$$
\begin{equation*}
E=m c^{2} \tag{1}
\end{equation*}
$$

if the energy E has the dimensions $M L^{2} T^{-2}$ and mass m has the dimension M. In particular, what is the dimension of c ? That is, given

$$
\begin{equation*}
[c]=M^{\alpha} L^{\beta} T^{\gamma}, \tag{2}
\end{equation*}
$$

determine α, β, and γ.

Solution

3. (10 points.) Consider the mathematical expression

$$
\begin{equation*}
x=v t+\frac{1}{2!} a t^{2}+\frac{1}{3!} b t^{3}+\frac{1}{4!} c t^{4}, \tag{3}
\end{equation*}
$$

where x is measured in units of distance and t is measured in units of time. Determine the dimension of the physical quantity represented by the symbol b. That is, given

$$
\begin{equation*}
[b]=M^{\alpha} L^{\beta} T^{\gamma}, \tag{4}
\end{equation*}
$$

determine α, β, and γ.

Solution

4. (10 points.) Consider the mathematical expression

$$
\begin{equation*}
x=A e^{-\omega t} \tag{5}
\end{equation*}
$$

where x is measured in units of distance and t is measured in units of time. Evaluate $\frac{d x}{d t}$. Then, determine the dimension of ωA. That is, given

$$
\begin{equation*}
[\omega A]=M^{\alpha} L^{\beta} T^{\gamma}, \tag{6}
\end{equation*}
$$

determine α, β, and γ.

Solution

5. (10 points.) Complete the operations and express your answer in scientific notation with correct number of significant digits.
(a) 345×72
(b) $55 \div 11$
(c) $34.3456+42.1$
(d) $46.32-56.92345$
(e) $15600-12$

Solution

