Homework No. 10B (Fall 2023)
 PHYS 205A-002: UNIVERSITY PHYSICS
 School of Physics and Applied Physics, Southern Illinois University-Carbondale

Due date: Monday, 2023 Nov 27, 2:00 PM, on D2L

Instructions

- You are encouraged to use any of the resources to complete this homework. However, the extent to which you depend on resources while doing homework is usually a measure of how much extra work you need to put in to master the associated concepts. Solutions should be the last resource.
- Describe your thought process in detail and organize it clearly. Make sure your answer has units and the right number of significant digits.
- After completion, scan the pages as a single PDF file, and submit the file on D2L (under Assessments \rightarrow Assignments).

Problems

1. (10 points.) The center of mass of an elongated block of mass M, with non-uniform mass distribution inside it, may be determined by an arrangement shown in Figure 1 below. The block is placed on a plank of mass $m=0$ that rests on two scales separated by a distance equal to the length $L=2.00 \mathrm{~m}$ of the block. The scales that measure the normal forces read $N_{2}=450.0 \mathrm{~N}$ and $N_{1}=350.0 \mathrm{~N}$. Determine the distance x of the center of mass of the block from one end.

Figure 1: Problem 1.

[Solution]

2. (10 points.) Workers have loaded a delivery truck in such a way that its center of mass is only slightly forward of the rear axle. The mass of the truck and its contents is 7500 kg . Find the magnitude of the normal force exerted by the ground on the front wheels of the truck.

[Solution]

3. ($\mathbf{1 0}$ points.) Five balls of masses $m_{1}=1.0 \mathrm{~kg}, m_{2}=2.0 \mathrm{~kg}, m_{3}=3.0 \mathrm{~kg}, m_{4}=4.0 \mathrm{~kg}$, and $m_{0}=5.0 \mathrm{~kg}$, are connected by massless rods of length $a=10.0 \mathrm{~cm}$ and $b=15.0 \mathrm{~cm}$, as shown in Figure 2. This configuration is rotated about an axis coming out of the plane containing the five masses and passing through the mass m_{3}. The inertia associated with this rotational motion is quantified by the moment of inertia. Compute the moment of inertia.

Figure 2: Problem 3.
[Solution, 2022F FE P05, 2022S FE P06, 2021S FE P09]
4. (10 points.) An object in the shape of a spherical shell, (with $I=\frac{2}{3} M R^{2}$ when the axis of rotation passes through the center of sphere,) rolls perfectly (without sliding or slipping) on the surface of an incline that makes an angle 30° with the horizontal. What is the acceleration of the shell?

[Solution]

5. (10 points.) A uniform solid sylinder ($I=\frac{1}{2} M R^{2}$) of radius 10.0 cm and mass 1.00 kg is free to rotate about its symmetry axis. The cylinder acts like a pulley. A string wound around the cylinder is connected to a block of mass $m=0.50 \mathrm{~kg}$, which falls under gravity. See Figure 3. What is the acceleration of the mass m ?
[Refer 2018S FE P08, 2018S FE P08, 2016F FE P07, 2015F FE P10]

Figure 3: Problem 5.

