Homework No. 03 (Fall 2023)
 PHYS 205B: UNIVERSITY PHYSICS

School of Physics and Applied Physics, Southern Illinois University-Carbondale
Due date: Tuesday, 2023 Sep 19, 9:30 AM, on D2L

Instructions

- You are encouraged to use any of the resources to complete this homework. However, the extent to which you depend on resources while doing homework is usually a measure of how much extra work you need to put in to master the associated concepts. Solutions should be the last resource.
- Describe your thought process in detail and organize it clearly. Make sure your answer has units and the right number of significant digits.
- After completion, scan the pages as a single PDF file, and submit the file on D2L (under Assessments \rightarrow Assignments).

Problems

1. (10 points.) Consider a region of uniform electric field $\overrightarrow{\mathbf{E}}=-E \hat{\mathbf{j}}$ of magnitude $E=$ $1.0 \times 10^{3} \mathrm{~N} / \mathrm{C}$ and direction vertically down. Distance between points A to B is $h=6.0 \mathrm{~cm}$, and the distance between points B to C is $d=8.0 \mathrm{~cm}$. Refer Fig. 1 .
(a) What is the potential difference between points A and B ?
(b) What is the potential difference between points B and C ?
(c) What is the potential difference between points A and C ?

Figure 1: Problem 1

Solution

Figure 2: Problem 2
2. (10 points.) A sphere with uniform charge distribution $-Q=-3.0 \mu \mathrm{C}$ is fixed at the origin. Point A is on a sphere of radius 5.0 cm and point B is on a sphere of radius 10.0 cm . Refer Figure 2.
(a) What is the work done by the electric force acting on charge $q=+2.0 \mu \mathrm{C}$, when q is moved from point A to point B.
(b) What is the change in the electric potential energy between $-Q$ and q when q is moved from point A to point B.
(c) If there are no other forces acting on charge q, using the work-energy theorem calculate the change in kinetic energy of charge q.

Solution

3. ($\mathbf{1 0}$ points.) Find the electric potential at the point marked \times on the x axis in Figure 3. Given $q_{1}=-1.0 \mathrm{nC}, q_{2}=+2.0 \mathrm{nC}, s=2 a, t=3 a, y=4 a, a=1.8 \mathrm{~cm}$.

Figure 3: Problem 3

Solution [2023 Spring, MT-01, Problem 7]
4. (10 points.) Four charges $q_{1}=q, q_{2}=-2 q, q_{3}=-3 q$, and $q_{4}=4 q$, are placed at the corners of a square of side L, such that q_{1} and q_{4} are at diagonally opposite corners. Refer Figure 4.

Figure 4: Problem 4
(a) What is the electric potential at the center of square?
(b) What is the electric potential at point a ?
(c) What is the electric potential at point b ?
(d) What is the electric potential difference between points a and c ?
(e) How much potential energy is required to move another charge q from infinity to the center of the square?
(f) How much additional potential energy is required to move this charge from the center of the square to point a ?

Solution

5. ($\mathbf{1 0}$ points.) Determine the total energy required to assemble four identical positive charges Q at the corners of a square of length L. Assume that the charges are brought from infinity.

Solution

6. ($\mathbf{1 0}$ points.) A positive charge $Q_{1}=1.0 \mathrm{nC}$ is held fixed. Another positive charge $Q_{2}=2 Q_{1}$ is tied to charge Q_{1} using a string of length $a=5.0 \mathrm{~cm}$. Assume the radius of the two charges to be small in comparison to a. The charges have masses $m_{1}=0.05$ grams and $m_{2}=2 m_{1}$. When the string is cut the two charges fly off in opposite directions. Determine the speed of each of the charges when they are (infinitely) far apart. (Hint: Use conservation of momentum and conservation of energy.)

Solution

7. (10 points.) Consider a uniformly charged disc of radius R with charge per unit area σ placed on the $y z$ plane such that the origin is the center of the disc. Determine the electric potential on the x axis to be

$$
\begin{equation*}
V(x)=-\frac{\sigma}{2 \varepsilon_{0}}\left[x-\sqrt{x^{2}+R^{2}}\right] \tag{1}
\end{equation*}
$$

Using the fact that the electric field is the negative gradient of the electric potential, calculate the x-component of the electric field on the x axis to be

$$
\begin{equation*}
E_{x}=-\frac{\partial V}{\partial x}=\frac{\sigma}{2 \varepsilon_{0}}\left[1-\frac{x}{\sqrt{x^{2}+R^{2}}}\right] \tag{2}
\end{equation*}
$$

(a) Show that this leads to the potential and electric field of a point charge in the limit $R \ll x$.
(b) Analyze the limit $x \ll R$. Show that this leads to the potential and electric field for a non-conducting uniformly charged plate. Plot the electric potential as a function of x for this case.

Solution

8. ($\mathbf{1 0}$ points.) The electric field inside and outside a conducting sphere of radius R is given by

$$
\mathbf{E}= \begin{cases}0, & r<R \text { (inside) } \tag{3}\\ \frac{1}{4 \pi \varepsilon_{0}} \frac{Q}{r^{2}} \hat{\mathbf{r}}, & R<r \text { (outside) } .\end{cases}
$$

Determine the electric potential inside (and outside) the sphere using

$$
\begin{equation*}
\Delta V=-\int_{\mathbf{r}_{i}}^{\mathbf{r}_{f}} d \mathbf{l} \cdot \mathbf{E} \tag{4}
\end{equation*}
$$

Hint: Since the electric field is zero inside a perfect conductor, the electric potential inside the conductor must be a constant.

Solution

