Homework No. 04 (Fall 2023)

PHYS 205B: UNIVERSITY PHYSICS
School of Physics and Applied Physics, Southern Illinois University-Carbondale
Due date: Thursday, 2023 Sep 28, 9:30 AM, on D2L

Instructions

- You are encouraged to use any of the resources to complete this homework. However, the extent to which you depend on resources while doing homework is usually a measure of how much extra work you need to put in to master the associated concepts. Solutions should be the last resource.
- Describe your thought process in detail and organize it clearly. Make sure your answer has units and the right number of significant digits.
- After completion, scan the pages as a single PDF file, and submit the file on D2L (under Assessments \rightarrow Assignments).

Problems

1. ($\mathbf{1 0}$ points.) Derive the capacitance of a cylindrical capacitor consisting of coaxial conducting cylinders of length L. The capacitor consists of a solid cylinder of radius a and another cylinderical conducting shell of radius $b>a$.

Solution

2. ($\mathbf{1 0}$ points.) A capacitor of capacitance 10.0 nF is connected to a 10.0 V balltery. Let us assume that the capacitor consists of two parallel plates of area A separated by distance d.
(a) Determine the charge accumulated on each plate of the capacitor.
(b) Determine the energy stored in the capacitor.

Solution

3. ($\mathbf{1 0}$ points.) Determine the equivalent capacitance between points A and B in the circuit in Figure 1. Given $C_{1}=1.0 \mu \mathrm{~F}, C_{2}=2.0 \mu \mathrm{~F}, C_{3}=3.0 \mu \mathrm{~F}$, and $C_{4}=4.0 \mu \mathrm{~F}$.

Solution

4. ($\mathbf{1 0}$ points.) A potential difference $V=10.0 \mathrm{~V}$ is applied across a capacitor arrangement with two capacitances connected in parallel, $C_{1}=10.0 \mu \mathrm{~F}$ and $C_{2}=20.0 \mu \mathrm{~F}$.

Figure 1: Problem 3

Figure 2: Problem 4
(a) Find the equivalent capacitance.
(b) Find the charges Q_{1} and Q_{2} on each of the capacitors.
(c) Find the voltages V_{1} and V_{2} across each of the capacitors.
(d) Find the potential energies U_{1} and U_{2} stored inside each of the capacitors.
(e) Find the ratio V_{1} / V_{2} of the voltages across the capacitors.
(f) Find the ratio Q_{1} / Q_{2} of the charges on the capacitors.
(g) Find the ratio U_{1} / U_{2} of the potential energies stored inside the capacitors.

Solution

5. (10 points.) A potential difference $V=10.0 \mathrm{~V}$ is applied across a capacitor arrangement with two capacitances connected in series, $C_{1}=10.0 \mu \mathrm{~F}$ and $C_{2}=20.0 \mu \mathrm{~F}$.
(a) Find the equivalent capacitance.
(b) Find the charges Q_{1} and Q_{2} on each of the capacitors.
(c) Find the voltages V_{1} and V_{2} across each of the capacitors.
(d) Find the potential energies U_{1} and U_{2} stored inside each of the capacitors.
(e) Find the ratio V_{1} / V_{2} of the voltages across the capacitors.
(f) Find the ratio Q_{1} / Q_{2} of the charges on the capacitors.
(g) Find the ratio U_{1} / U_{2} of the potential energies stored inside the capacitors.

Figure 3: Problem 5

Solution

6. ($\mathbf{1 0}$ points.) In the circuit in Figure 4 determine the charge on capacitor C_{3}. Let $V=$ $10.0 \mathrm{~V}, C_{1}=10.0 \mathrm{nF}, C_{2}=20.0 \mathrm{nF}$, and $C_{3}=30.0 \mathrm{nF}$.

Figure 4: Problem 6.

Solution (Erratum: The units in Solution should be nF, not $\mu \mathrm{F}$.)

