(Preview of) Final Exam (Fall 2023)

PHYS 500A: MATHEMATICAL METHODS
School of Physics and Applied Physics, Southern Illinois University-Carbondale Date: 2023 Dec 15

1. (20 points.) Not available in preview mode.
2. (20 points.) Not available in preview mode.
3. (20 points.) The generating function for the Legendre polynomials $P_{l}(x)$ of degree l is

$$
\begin{equation*}
g(t, x)=\frac{1}{\sqrt{1+t^{2}-2 x t}}=\sum_{l=0}^{\infty} t^{l} P_{l}(x) \tag{1}
\end{equation*}
$$

(a) Starting from the generating function and differentiating with respect to t we derived the recurrence relation for Legendre polynomials in Eq. (2),

$$
\begin{equation*}
(l+1) P_{l+1}(x)=(2 l+1) x P_{l}(x)-l P_{l-1}(x), \quad l=0,1,2, \ldots, \tag{2}
\end{equation*}
$$

in terms of

$$
\begin{equation*}
P_{0}(x)=1=g(0, x) . \tag{3}
\end{equation*}
$$

Differentiating the recurrence relation with respect to x show that

$$
\begin{equation*}
(2 l+1) P_{l}+(2 l+1) x P_{l}^{\prime}=l P_{l-1}^{\prime}+(l+1) P_{l+1}^{\prime}, \quad l=0,1,2, \ldots, \tag{4}
\end{equation*}
$$

where we supressed the dependence in x and prime in the superscript of $P_{l}^{\prime}(x)$ denotes derivative with respect to the argument x.
(b) Differentiating the generating function with respect to x show that

$$
\begin{equation*}
\frac{\partial g}{\partial x}=\frac{t}{\left(1+t^{2}-2 x t\right)^{\frac{3}{2}}}=\sum_{l=0}^{\infty} t^{l} P_{l}^{\prime}(x) . \tag{5}
\end{equation*}
$$

Show that the second equality can be rewritten in the form

$$
\begin{equation*}
\frac{t}{\sqrt{1+t^{2}-2 x t}}=\left(1+t^{2}-2 x t\right) \sum_{l=0}^{\infty} t^{l} P_{l}^{\prime}(x), \tag{6}
\end{equation*}
$$

and implies

$$
\begin{equation*}
t \sum_{l=0}^{\infty} t^{l} P_{l}(x)=\left(1+t^{2}-2 x t\right) \sum_{l=0}^{\infty} t^{l} P_{l}^{\prime}(x) \tag{7}
\end{equation*}
$$

Express this in the form

$$
\begin{align*}
t^{0}\left[P_{0}^{\prime}(x)\right] & +t^{1}\left[P_{1}^{\prime}(x)-2 x P_{0}^{\prime}(x)-P_{0}(x)\right] \\
& +\sum_{l=2}^{\infty} t^{l}\left[P_{l}^{\prime}(x)+P_{l-2}^{\prime}(x)-2 x P_{l-1}^{\prime}(x)-P_{l-1}(x)\right]=0 \tag{8}
\end{align*}
$$

Then, using the completeness property of Taylor expansion, that is, equating the coefficients of powers of t in the expansion, show that, for t^{0} and t^{1},

$$
\begin{align*}
& P_{0}^{\prime}(x)=0 \tag{9a}\\
& P_{1}^{\prime}(x)=P_{0}(x)=1, \tag{9b}
\end{align*}
$$

and matching powers of t^{l} for $l \geq 2$ derive a recurrence relation for the derivative of Legendre polynomials as

$$
\begin{equation*}
2 x P_{l-1}^{\prime}+P_{l-1}=P_{l}^{\prime}+P_{l-2}^{\prime}, \quad l=2,3, \ldots \tag{10}
\end{equation*}
$$

Here, we shall find it convenient to use the above recurrence relations in the form

$$
\begin{equation*}
2 x P_{l}^{\prime}+P_{l}=P_{l+1}^{\prime}+P_{l-1}^{\prime}, \quad l=1,2,3, \ldots, \tag{11}
\end{equation*}
$$

which is obtained by setting $l \rightarrow l+1$.
(c) Equations (4) and (11) are linear set of equations for P_{l-1}^{\prime} and P_{l+1}^{\prime} in terms of P_{l} and P_{l}^{\prime}. Solve them to find

$$
\begin{array}{ll}
P_{l+1}^{\prime}=x P_{l}^{\prime}+(l+1) P_{l}, & l=0,1,2, \ldots \\
P_{l-1}^{\prime}=x P_{l}^{\prime}-l P_{l} . & \tag{12b}\\
l=1,2,3, \ldots
\end{array}
$$

(d) Using $l \rightarrow l-1$ in Eq. (12a) show that

$$
\begin{equation*}
P_{l}^{\prime}=x P_{l-1}^{\prime}+l P_{l-1} . \tag{13}
\end{equation*}
$$

Then, substitute Eq. (12b) to obtain

$$
\begin{equation*}
\left(1-x^{2}\right) P_{l}^{\prime}=l P_{l-1}-x l P_{l} . \tag{14}
\end{equation*}
$$

Differentiate the above equation and substitute Eq. (12b) again to derive the differential equation for Legendre polynomials as

$$
\begin{equation*}
\left[\frac{\partial}{\partial x}\left(1-x^{2}\right) \frac{\partial}{\partial x}+l(l+1)\right] P_{l}(x)=0 . \tag{15}
\end{equation*}
$$

Substitute $x=\cos \theta$ to rewrite the differential equation in the form

$$
\begin{equation*}
\left[\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \sin \theta \frac{\partial}{\partial \theta}+l(l+1)\right] P_{l}(\cos \theta)=0 \tag{16}
\end{equation*}
$$

4. (20 points.) The generating function for the Legendre polynomials $P_{l}(x)$ of degree l is

$$
\begin{equation*}
g(t, x)=\frac{1}{\sqrt{1+t^{2}-2 x t}}=\sum_{l=0}^{\infty} t^{l} P_{l}(x) \tag{17}
\end{equation*}
$$

(a) Using binomial expansion show that

$$
\begin{equation*}
\frac{1}{\sqrt{1-y}}=\sum_{m=0}^{\infty} y^{m} \frac{(2 m)!}{\left[m!2^{m}\right]^{2}} \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(2 x t-t^{2}\right)^{m}=\sum_{n=0}^{\infty} \frac{m!}{n!(m-n)!}(2 x t)^{m-n} t^{2 n}(-1)^{n} . \tag{19}
\end{equation*}
$$

Thus, show that

$$
\begin{equation*}
\frac{1}{\sqrt{1+t^{2}-2 x t}}=\sum_{m=0}^{\infty} \sum_{n=0}^{m} t^{m+n} \frac{(2 m)!}{m!n!(m-n)!2^{m+n}} x^{m-n}(-1)^{n} \tag{20}
\end{equation*}
$$

Figure 1: Double summation.
(b) In Figure 1 we illustrate how we change the double sum in m and n to variables l and s. This is achieved using the substitutions

$$
\begin{align*}
& m+n=l \tag{21a}\\
& m-n=2 s \tag{21b}
\end{align*}
$$

which corresponds to

$$
\begin{equation*}
2 m=l+2 s, \quad m=\frac{l}{2}+s, \quad \text { and } \quad n=\frac{l}{2}-s . \tag{22}
\end{equation*}
$$

The counting on the variable s, for given l, follows the pattern,

$$
\begin{align*}
l \text { even }: & 2 s=0,2,4, \ldots, l, \tag{23a}\\
l \text { odd }: & 2 s=1,3,5, \ldots, l \tag{23b}
\end{align*}
$$

Show that in terms of l and s the double summation can be expressed as

$$
\begin{equation*}
\frac{1}{\sqrt{1+t^{2}-2 x t}}=\sum_{l=0}^{\infty} \sum_{s} t^{l} \frac{(l+2 s)!}{\left(\frac{l}{2}+s\right)!\left(\frac{l}{2}-s\right)!(2 s)!2^{2}} x^{2 s}(-1)^{\frac{l}{2}-s} \tag{24}
\end{equation*}
$$

where the limits on the sum in s are dictated by Eqs. (23) depending on l being even or odd. Thus, read out the polynomial expression for Legendre polynomials of degree l to be

$$
\begin{equation*}
P_{l}(x)=\sum_{s} \frac{(l+2 s)!}{\left(\frac{l}{2}+s\right)!\left(\frac{l}{2}-s\right)!(2 s)!2^{l}} x^{2 s}(-1)^{\frac{l}{2}-s}, \tag{25}
\end{equation*}
$$

where the summation on s depends on whether l is even or odd.
(c) Show that

$$
\begin{equation*}
\left(\frac{d}{d x}\right)^{l} x^{l+2 s}=\frac{(l+2 s)!}{(2 s)!} x^{2 s} \tag{26}
\end{equation*}
$$

Thus, show that

$$
\begin{equation*}
P_{l}(x)=\frac{1}{l!2^{l}}\left(\frac{d}{d x}\right)^{l} \sum_{s} \frac{l!}{\left(\frac{l}{2}+s\right)!\left(\frac{l}{2}-s\right)!} x^{l+2 s}(-1)^{\frac{l}{2}-s} . \tag{27}
\end{equation*}
$$

(d) For even l the summation in s runs from $s=0$ to $s=l / 2$, Thus, writing $l+2 s=$ $2\left[l-\left(\frac{l}{2}-s\right)\right]$, show that

$$
\begin{equation*}
P_{l}(x)=\frac{1}{l!2^{l}}\left(\frac{d}{d x}\right)^{l} \sum_{s=0}^{\frac{l}{2}} \frac{l!}{\left(\frac{l}{2}+s\right)!\left(\frac{l}{2}-s\right)!}\left(x^{2}\right)^{l-\left(\frac{l}{2}-s\right)}(-1)^{\left(\frac{l}{2}-s\right)} . \tag{28}
\end{equation*}
$$

Then, substituting

$$
\begin{equation*}
\frac{l}{2}-s=n \tag{29}
\end{equation*}
$$

show that

$$
\begin{equation*}
P_{l}(x)=\frac{1}{l!2^{l}}\left(\frac{d}{d x}\right)^{l} \sum_{n=0}^{\frac{l}{2}} \frac{l!}{(l-n)!n!}\left(x^{2}\right)^{l-n}(-1)^{n} \tag{30}
\end{equation*}
$$

Note that the summation on n runs from $n=0$ to $n=l / 2$. If we were to extend this sum to $n=l$ verify that the additional terms will have powers in x less than l. Since the terms in the sum are acted upon by l derivatives with respect to x these additional terms will not contribute. Thus, show that

$$
\begin{equation*}
P_{l}(x)=\left(\frac{d}{d x}\right)^{l} \frac{\left(x^{2}-1\right)^{l}}{l!2^{l}} \tag{31}
\end{equation*}
$$

Similarly, for odd l the summation is s runs as

$$
\begin{equation*}
2 s=1,3,5, \ldots, l, \tag{32}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{2 s-1}{2}=0,1,2, \ldots, \frac{l-1}{2} \tag{33}
\end{equation*}
$$

Thus, substituting

$$
\begin{equation*}
s^{\prime}=\frac{2 s-1}{2}=s-\frac{1}{2}, \tag{34}
\end{equation*}
$$

show that

$$
\begin{equation*}
P_{l}(x)=\frac{1}{l!2^{l}}\left(\frac{d}{d x}\right)^{l} \sum_{s=0}^{l-\frac{l-1}{2}} \frac{l!}{\left(\frac{l+1}{2}+s\right)!\left(\frac{l-1}{2}-s\right)!} x^{l+1+2 s}(-1)^{\left(\frac{l-1}{2}-s\right)} . \tag{35}
\end{equation*}
$$

Substituting

$$
\begin{equation*}
\frac{l-1}{2}-s=n \tag{36}
\end{equation*}
$$

and writing

$$
\begin{equation*}
\frac{l+1}{2}+s=l-\left(\frac{l-1}{2}-s\right) \tag{37}
\end{equation*}
$$

show that

$$
\begin{equation*}
P_{l}(x)=\frac{1}{l!2^{l}}\left(\frac{d}{d x}\right)^{l} \sum_{n=0}^{\frac{l-1}{2}} \frac{l!}{(l-n)!n!}\left(x^{2}\right)^{l-n}(-1)^{n} \tag{38}
\end{equation*}
$$

Again, like in the case of even l we can extend the sum on n beyond $n=(l-1) / 2$, because they do not survive under the action of l derivatives with respect to x. Thus, again, we have

$$
\begin{equation*}
P_{l}(x)=\left(\frac{d}{d x}\right)^{l} \frac{\left(x^{2}-1\right)^{l}}{l!2^{l}} \tag{39}
\end{equation*}
$$

which is exactly the form obtained for even l. The expression in Eq. (39) is the Rodrigues formula for generating the Legendre polynomials of degree l.
5. (20 points.) Consider the electric potential due to a solid sphere with uniform charge density Q. The angular integral in this evaluation involves the integral

$$
\begin{equation*}
\frac{1}{2} \int_{-1}^{1} d t \frac{1}{\sqrt{r^{2}+{r^{\prime}}^{2}-2 r r^{\prime} t}} \tag{40}
\end{equation*}
$$

Evaluate the integral for $r<r^{\prime}$ and $r^{\prime}<r$, where r and r^{\prime} are distances measured from the center of the sphere. (Hint: Substitute $r^{2}+r^{\prime 2}-2 r r^{\prime} t=y$.)

