Midterm Exam No. 01 (Fall 2023)
PHYS 500A: MATHEMATICAL METHODS
School of Physics and Applied Physics, Southern Illinois University-Carbondale Date: 2023 Sep 29

1. (20 points.) Using the property of Kronecker δ-symbol and Levi-Civita symbol evaluate the following using index notation,

$$
\begin{equation*}
\left(\delta_{i m} \delta_{j n}-\delta_{i n} \delta_{j m}\right) \delta_{j n} . \tag{1}
\end{equation*}
$$

2. ($\mathbf{2 0}$ points.) For a vector field \mathbf{A}, evaluate the vector identity

$$
\begin{equation*}
\boldsymbol{\nabla} \cdot(\boldsymbol{\nabla} \times \mathbf{A}) \tag{2}
\end{equation*}
$$

Then, after the introduction of a scalar field ψ, evaluate

$$
\begin{equation*}
\boldsymbol{\nabla}[\psi \cdot(\boldsymbol{\nabla} \times \mathbf{A})] . \tag{3}
\end{equation*}
$$

3. (20 points.) Consider the dyadic construction

$$
\begin{equation*}
\mathbf{M}=\hat{\mathbf{i}} \hat{\mathbf{j}}+\hat{\mathbf{j}} \hat{\mathbf{i}} \tag{4}
\end{equation*}
$$

where $\hat{\mathbf{i}}$ and $\hat{\mathbf{j}}$ are orthonormal vectors. Evaluate

$$
\begin{equation*}
\operatorname{tr}\left(\mathbf{M}^{108}\right) \tag{5}
\end{equation*}
$$

4. (20 points.) A uniformly charged infinitely thin disc of radius R and total charge Q is placed on the $z=h \neq 0$ plane such that the normal vector on the disc is along the z axis and the center of the disc at the origin. Write down the charge density of the disc in terms of δ-functions and Heaviside step functions.
5. (20 points.) Evaluate

$$
\begin{equation*}
(\mathbf{a} \times \boldsymbol{\nabla}) \cdot(\mathbf{r} \times \mathbf{b}) \tag{6}
\end{equation*}
$$

where \mathbf{r} is the coordinate vector and a and a are coordinate independent vectors.

