Homework No. 02 (Fall 2023)
PHYS 500A: MATHEMATICAL METHODS
School of Physics and Applied Physics, Southern Illinois University-Carbondale Due date: Friday, 2023 Sep 8, 4.30pm

1. (20 points.) Verify the following identities:

$$
\begin{align*}
\nabla r & =\frac{\mathbf{r}}{r}=\hat{\mathbf{r}}, \tag{1a}\\
\boldsymbol{\nabla} \mathbf{r} & =\mathbf{1} . \tag{1b}
\end{align*}
$$

Further, show that

$$
\begin{array}{r}
\boldsymbol{\nabla} \cdot \mathbf{r}=3 \\
\boldsymbol{\nabla} \times \mathbf{r}=0 \tag{2b}
\end{array}
$$

Here r is the magnitude of the position vector \mathbf{r}, and $\hat{\mathbf{r}}$ is the unit vector pointing in the direction of \mathbf{r}.
2. ($\mathbf{2 0}$ points.) Evaluate the left hand side of the equation

$$
\begin{equation*}
\boldsymbol{\nabla}(\mathbf{r} \cdot \mathbf{p})=a \mathbf{p}+b \mathbf{r} \tag{3}
\end{equation*}
$$

where \mathbf{p} is a constant vector. Thus, find a and b.
3. (20 points.) Evaluate

$$
\begin{equation*}
\nabla \cdot\left(\frac{\mathbf{r}}{r^{3}}\right) \tag{4}
\end{equation*}
$$

everywhere in space, including $\mathbf{r}=0$.
Hint: Check your answer for consistency by using divergence theorem.
4. (20 points.) Evaluate

$$
\begin{equation*}
\boldsymbol{\nabla}\left(\frac{\mathbf{p} \cdot \mathbf{r}}{r^{3}}\right) \tag{5}
\end{equation*}
$$

where \mathbf{p} is a constant vector.
5. (20 points.) Consider the distribution

$$
\begin{equation*}
\delta(x)=\lim _{\varepsilon \rightarrow 0} \frac{1}{\pi} \frac{\varepsilon}{x^{2}+\varepsilon^{2}} \tag{6}
\end{equation*}
$$

Show that

$$
\delta(x)\left\{\begin{array}{ll}
\rightarrow \infty, & \text { if }
\end{array} \quad x=0, ~ \begin{array}{ll}
\rightarrow 0, & \text { if } \tag{7}
\end{array}\right.
$$

Further, show that

$$
\begin{equation*}
\int_{-\infty}^{\infty} d x \delta(x)=1 \tag{8}
\end{equation*}
$$

Plot $\delta(x)$ before taking the limit $\varepsilon \rightarrow 0$ and identify ε in the plot.
6. ($\mathbf{1 0}$ points.) A uniformly charged infinitely thin disc of radius R and total charge Q is placed on the $x-y$ plane such that the normal vector is along the z axis and the center of the disc at the origin. Write down the charge density of the disc in terms of δ-function(s). Integrate over the charge density and verify that it returns the total charge on the disc.
7. ($\mathbf{1 0}$ points.) An (idealized) infinitely long wire, (on the z-axis with infinitesimally small cross sectional area,) carrying a current I can be mathematically represented by the current density

$$
\begin{equation*}
\mathbf{J}(\mathbf{x})=\hat{\mathbf{z}} I \delta(x) \delta(y) \tag{9}
\end{equation*}
$$

A similar idealized wire forms a circular loop and is placed on the $x y$-plane with the center of the circular loop at the origin. Write down the current density of the circular loop carrying current I.

