Homework No. 05 (Fall 2023)

PHYS 500A: MATHEMATICAL METHODS
School of Physics and Applied Physics, Southern Illinois University-Carbondale Due date: Friday, 2023 Sep 29, 4.30pm

1. (20 points.) Let \mathbf{e}^{i}, for $i=1,2$, be an eigenbasis set, such that

$$
\begin{equation*}
\mathbf{e}^{1} \mathbf{e}_{1}+\mathbf{e}^{2} \mathbf{e}_{2}=\mathbf{1} \tag{1}
\end{equation*}
$$

We have

$$
\begin{equation*}
\mathbf{e}_{i}=\left(\mathbf{e}^{i}\right)^{\dagger} . \tag{2}
\end{equation*}
$$

Let \mathbf{g}^{i}, for $i=1,2$, be another eigenbasis set, such that

$$
\begin{equation*}
\mathbf{g}^{1} \mathbf{g}_{1}+\mathbf{g}^{2} \mathbf{g}_{2}=\mathbf{1} \tag{3}
\end{equation*}
$$

Using the above two eigenbases we can construct the operator

$$
\begin{equation*}
\mathbf{U}=\mathbf{g}^{1} \mathbf{e}_{1}+\mathbf{g}^{2} \mathbf{e}_{2} \tag{4}
\end{equation*}
$$

Show that

$$
\begin{align*}
& \mathbf{U} \cdot \mathbf{e}^{1}=\mathbf{g}^{1} \tag{5a}\\
& \mathbf{U} \cdot \mathbf{e}^{2}=\mathbf{g}^{2} \tag{5b}
\end{align*}
$$

Thus, the operator \mathbf{U} is the transformation matrix taking us from the eigenbasis \mathbf{e}^{i} to \mathbf{g}^{i}. What is the associated inverse transformation? To this end, using

$$
\begin{equation*}
\left(\mathbf{g}^{i} \cdot \mathbf{e}_{j}\right)^{\dagger}=\mathbf{e}_{j}^{\dagger} \cdot \mathbf{g}^{i \dagger}=\mathbf{e}^{j} \cdot \mathbf{g}_{i} \tag{6}
\end{equation*}
$$

show that

$$
\begin{equation*}
\mathbf{U}^{\dagger}=\mathbf{e}^{1} \mathbf{g}_{1}+\mathbf{e}^{2} \mathbf{g}_{2} \tag{7}
\end{equation*}
$$

and verify

$$
\begin{align*}
& \mathbf{U}^{\dagger} \cdot \mathbf{g}^{1}=\mathbf{e}^{1} \tag{8a}\\
& \mathbf{U}^{\dagger} \cdot \mathbf{g}^{2}=\mathbf{e}^{2} \tag{8b}
\end{align*}
$$

Thus, \mathbf{U}^{\dagger} is the inverse transformation matrix taking us from the eigenbasis \mathbf{g}^{i} back to \mathbf{e}^{i}. Further, verify that

$$
\begin{align*}
& \mathbf{U}^{\dagger} \cdot \mathbf{U}=\mathbf{1} \tag{9a}\\
& \mathbf{U} \cdot \mathbf{U}^{\dagger}=\mathbf{1} \tag{9b}
\end{align*}
$$

which states that \mathbf{U} is an unitary operator. Repeat this for i running from 1 to 3. Does it go through? Repeat this for i running from 1 to n. Does it go through?

Figure 1: A periodic unitary operator.
2. ($\mathbf{2 0}$ points.) Given two eigenbases \mathbf{e}^{i} and \mathbf{g}^{i} we can construct an unitary operator

$$
\begin{equation*}
\mathbf{U}=\mathbf{g}^{i} \mathbf{e}_{i} \tag{10}
\end{equation*}
$$

A Schwinger periodic unitary operator is constructed by choosing the second eigenbasis \mathbf{g}^{i} to be the same as the original eigenbasis set \mathbf{e}^{i} but in a different order. That is,

$$
\mathbf{g}^{i}= \begin{cases}\mathbf{e}^{i+1}, & \text { if } \quad i \neq n \tag{11}\\ \mathbf{e}^{1}, & \text { if } \quad i=n\end{cases}
$$

such that the unitary operator is

$$
\begin{equation*}
\mathbf{U}=\mathbf{e}^{i+1} \mathbf{e}_{i} \tag{12}
\end{equation*}
$$

(a) Show that

$$
\mathbf{U} \cdot \mathbf{e}^{i}= \begin{cases}\mathbf{e}^{i+1}, & \text { if } \quad i \neq n \tag{13}\\ \mathbf{e}^{1}, & \text { if } \quad i=n\end{cases}
$$

Verify that the transformation is cyclic, that is,

$$
\begin{align*}
& \mathbf{U} \cdot \mathbf{e}^{1}=\mathbf{e}^{2}, \tag{14a}\\
& \mathbf{U}^{2} \cdot \mathbf{e}^{1}=\mathbf{e}^{3}, \tag{14b}\\
& \vdots \\
& \mathbf{U}^{n-1} \cdot \mathbf{e}^{1}=\mathbf{e}^{n}, \tag{14c}\\
& \mathbf{U}^{n} \cdot \mathbf{e}^{1}=\mathbf{e}^{1} . \tag{14d}
\end{align*}
$$

The cyclic nature of the transformation of the eigenbasis is illustrated in Figure 1 and generated by the periodic unitary operator \mathbf{U}.
(b) Show that the periodic unitary operator satisfies

$$
\begin{equation*}
\mathbf{U}^{n}=\mathbf{1} \tag{15}
\end{equation*}
$$

where n is called the period of \mathbf{U}. Consider the eigenvalue equation

$$
\begin{equation*}
\mathbf{U} \cdot \mathbf{u}^{k}=u_{k}^{\prime} \mathbf{u}^{k}, \quad \text { no sum on } k . \tag{16}
\end{equation*}
$$

The eigenvalues u_{k}^{\prime} of the operator \mathbf{U} satisfy

$$
\begin{equation*}
\left(u_{k}^{\prime}\right)^{n}=1, \tag{17}
\end{equation*}
$$

where u_{k}^{\prime} is the k-th eigenvalue, $k=1,2, \ldots, n$. An immediate observation, then, is that the eigenvalues are the n-th roots of unity,

$$
\begin{equation*}
u_{k}^{\prime}=e^{i \frac{2 \pi}{n} k}, \quad k=1,2, \ldots, n . \tag{18}
\end{equation*}
$$

To determine the eigenvectors \mathbf{u}^{k} in the eigenbasis of \mathbf{e}^{i} start by writing

$$
\begin{align*}
\mathbf{u}^{k} & =\mathbf{1} \cdot \mathbf{u}^{k} \tag{19a}\\
& =\sum_{l=1}^{n} \mathbf{e}^{l} \mathbf{e}_{l} \cdot \mathbf{u}^{k} \tag{19b}\\
& =\sum_{l=1}^{n} \mathbf{U}^{l} \cdot \mathbf{e}^{n}\left(\mathbf{e}_{l} \cdot \mathbf{u}^{k}\right) . \tag{19c}
\end{align*}
$$

where we used

$$
\begin{equation*}
\mathbf{e}^{l}=\mathbf{U}^{l} \cdot \mathbf{e}^{n} \tag{20}
\end{equation*}
$$

Operating from the left leads to

$$
\begin{equation*}
\mathbf{u}_{\bar{k}} \cdot \mathbf{u}^{k}=\sum_{l=1}^{n} \mathbf{u}_{\bar{k}} \cdot \mathbf{U}^{l} \cdot \mathbf{e}^{n}\left(\mathbf{e}_{l} \cdot \mathbf{u}^{k}\right) \tag{21a}
\end{equation*}
$$

Starting from the eigenvalue equation for \mathbf{U}, operate \mathbf{U}^{\dagger} on both sides, deduce

$$
\begin{equation*}
\mathbf{U}^{\dagger} \cdot \mathbf{u}^{k}=\left(u_{k}^{\prime}\right)^{*} \mathbf{u}^{k}, \quad \text { no sum on } k \tag{22}
\end{equation*}
$$

which leads to the reciprocal statement

$$
\begin{equation*}
\mathbf{u}_{k} \cdot \mathbf{U}=u_{k}^{\prime} \mathbf{u}_{k}, \quad \text { no sum on } k . \tag{23}
\end{equation*}
$$

Thus, we have

$$
\begin{equation*}
\mathbf{u}_{k} \cdot \mathbf{U}^{l}=e^{i \frac{2 \pi}{n} k l} \mathbf{u}_{k} . \tag{24}
\end{equation*}
$$

In conjunction with the orthogonality relations of the eigenvectors,

$$
\begin{equation*}
\mathbf{u}_{\bar{k}} \cdot \mathbf{u}^{k}=\delta_{\bar{k}}{ }^{k}, \tag{25}
\end{equation*}
$$

show that

$$
\begin{equation*}
\frac{\delta_{\bar{k}}^{k}}{\left(\mathbf{u}_{\bar{k}} \cdot \mathbf{e}^{n}\right)}=\sum_{l=1}^{n} e^{i \frac{2 \pi}{n} \bar{k} l}\left(\mathbf{e}_{l} \cdot \mathbf{u}^{k}\right) . \tag{26}
\end{equation*}
$$

Recognize the discrete Fourier transform in the above expression. Then, invert the equations to derive

$$
\begin{equation*}
\left(\mathbf{e}_{l} \cdot \mathbf{u}^{k}\right)=\frac{1}{n} \frac{e^{-i \frac{2 \pi}{n} k l}}{\left(\mathbf{u}_{k} \cdot \mathbf{e}^{n}\right)} \tag{27}
\end{equation*}
$$

For $l=n$, we have

$$
\begin{equation*}
\left(\mathbf{e}_{l} \cdot \mathbf{u}^{k}\right)\left(\mathbf{u}_{k} \cdot \mathbf{e}^{n}\right)=\frac{1}{n} \tag{28}
\end{equation*}
$$

so that

$$
\begin{equation*}
\left(\mathbf{u}_{k} \cdot \mathbf{e}^{n}\right)=\frac{1}{\sqrt{n}} \tag{29}
\end{equation*}
$$

up to a phase, and

$$
\begin{equation*}
\left(\mathbf{e}_{l} \cdot \mathbf{u}^{k}\right)=\frac{1}{\sqrt{n}} e^{-i \frac{2 \pi}{n} k l} \tag{30}
\end{equation*}
$$

Thus, show that the eigenvectors \mathbf{u}^{k} in the eigenbasis of \mathbf{e}^{i} are given by

$$
\begin{equation*}
\mathbf{u}^{k}=\frac{1}{\sqrt{n}} \sum_{l=1}^{n} e^{-i \frac{2 \pi}{n} k l} \mathbf{e}^{l} \tag{31}
\end{equation*}
$$

(c) Repeat the above exercise for another periodic operator constructed out of \mathbf{u}^{i} in the form

$$
\begin{equation*}
\mathbf{V}=\mathbf{u}^{i} \mathbf{u}_{i+1} \tag{32}
\end{equation*}
$$

Show that

$$
\mathbf{u}_{i} \cdot \mathbf{V}= \begin{cases}\mathbf{u}_{i+1}, & \text { if } \quad i \neq n \tag{33}\\ \mathbf{u}_{1}, & \text { if } \quad i=n\end{cases}
$$

Repeat the steps that we carried out for \mathbf{U} now for \mathbf{V}. Define the eigenvalue equation to act to the left, $\mathbf{v}_{k} \cdot \mathbf{V}=v_{k}^{\prime} \mathbf{v}_{k}$. In particular, show that

$$
\begin{equation*}
\mathbf{V}^{n}=\mathbf{1} \tag{34}
\end{equation*}
$$

eigenvalues v_{k}^{\prime} are given by

$$
\begin{equation*}
v_{k}^{\prime}=e^{i \frac{2 \pi}{n} k}, \quad k=1,2, \ldots, n \tag{35}
\end{equation*}
$$

and the eigenvectors are

$$
\begin{equation*}
\mathbf{v}_{k}=\frac{1}{\sqrt{n}} \sum_{l=1}^{n} e^{-i \frac{2 \pi}{n} k l} \mathbf{u}_{k} \tag{36}
\end{equation*}
$$

(d) Show that

$$
\begin{equation*}
\mathbf{v}^{i}=\mathbf{e}^{i} . \tag{37}
\end{equation*}
$$

Thus, recognize that the eigenvectors of the periodic operators \mathbf{U} and \mathbf{V} are related to each other by discrete Fourier transformation,

$$
\begin{align*}
& \mathbf{u}^{k}=\frac{1}{\sqrt{n}} \sum_{l=1}^{n} e^{-i \frac{2 \pi}{n} k l} \mathbf{v}^{l} \tag{38a}\\
& \mathbf{v}^{l}=\frac{1}{\sqrt{n}} \sum_{k=1}^{n} e^{i \frac{2 \pi}{n} k l} \mathbf{u}^{k} \tag{38b}
\end{align*}
$$

(e) Verify that

$$
\begin{equation*}
\mathbf{U} \cdot \mathbf{V} \cdot \mathbf{v}^{k}=\mathbf{v}^{k+1} e^{i \frac{2 \pi}{n} k} \tag{39}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbf{V} \cdot \mathbf{U} \cdot \mathbf{v}^{k}=\mathbf{v}^{k+1} e^{i \frac{2 \pi}{n}(k+1)} \tag{40}
\end{equation*}
$$

Thus, derive

$$
\begin{equation*}
\mathbf{U} \cdot \mathbf{V}=e^{i \frac{2 \pi}{n}} \mathbf{V} \cdot \mathbf{U} \tag{41}
\end{equation*}
$$

(f) For $n=2$ we have

$$
\begin{equation*}
\mathbf{U}^{2}=\mathbf{1}, \quad \mathbf{V}^{2}=\mathbf{1}, \quad \text { and } \quad \mathbf{U} \cdot \mathbf{V}=-\mathbf{V} \cdot \mathbf{U} \tag{42}
\end{equation*}
$$

These constitute four independent operators, $\mathbf{1}, \mathbf{U}, \mathbf{V}$, and $\mathbf{U} \cdot \mathbf{V}$, which have the same algebra as that of $1, \sigma_{x}, \sigma_{y}$, and σ_{z}.

