Homework No. 07 (Fall 2023)

PHYS 500A: MATHEMATICAL METHODS
School of Physics and Applied Physics, Southern Illinois University-Carbondale Due date: Monday, 2023 Oct 16, 4.30pm

1. (20 points.) Recall that analytic functions satisfy the Cauchy-Riemann equations. That is, the real and imaginary parts of an analytic function

$$
\begin{equation*}
f(x+i y)=u(x, y)+i v(x, y) \tag{1}
\end{equation*}
$$

satisfy

$$
\begin{align*}
\frac{\partial u}{\partial x} & =\frac{\partial v}{\partial y} \tag{2a}\\
\frac{\partial v}{\partial x} & =-\frac{\partial u}{\partial y} \tag{2b}
\end{align*}
$$

Given $f(z)$ and $g(z)$ are analytic functions in a region, then show that $f(g(z))$ satisfies the Cauchy-Riemann equations there.
Hint: Let $g=u+i v$ and $f=U+i V$. Thus, we can write

$$
\begin{equation*}
f(g(z))=U(u(x, y), v(x, y))+i V(u(x, y), v(x, y)) \tag{3}
\end{equation*}
$$

2. (20 points.) Given an analytic function

$$
\begin{equation*}
f(z)=u(x, y)+i v(x, y) \tag{4}
\end{equation*}
$$

and the gradient operator

$$
\begin{equation*}
\boldsymbol{\nabla}=\hat{\mathbf{i}} \frac{\partial}{\partial x}+\hat{\mathbf{j}} \frac{\partial}{\partial y} \tag{5}
\end{equation*}
$$

Show that Cauchy-Riemann equations imply

$$
\begin{equation*}
(\boldsymbol{\nabla} u) \cdot(\boldsymbol{\nabla} v)=0 \tag{6}
\end{equation*}
$$

Thus, interpret that u 's and v 's are orthogonal family of surfaces at every point.
3. (20 points.) Analytic functions are significantly constrained, in that they have to satisfy the Cauchy-Riemann conditions. These conditions are necessary (but not sufficient) for a function of a complex variable to be analytic (differentiable). Check if the following functions satisfy the Cauchy-Riemann conditions. If $f(z)$ is analytic for all z, then report
the derivative as a function of z. Otherwise, determine the points, or regions, in the z plane where the function is not analytic.

$$
\begin{align*}
& f(z)=z^{3} \tag{7a}\\
& f(z)=|z|^{2} \tag{7b}\\
& f(z)=e^{i z} \tag{7c}\\
& f(z)=\ln z \tag{7d}\\
& f(z)=e^{z}+e^{i z} \tag{7e}
\end{align*}
$$

4. (20 points.) Check if the function

$$
\begin{equation*}
f(z)=z z^{*} \tag{8}
\end{equation*}
$$

satisfies the Cauchy-Riemann conditions.
(a) Verify that all the points for $f(z)$ lies on the non-negative real line.
(b) Verify that as you approach the point $z=r \geq 0$ on the non-negative real line, along a circle of fixed radius r from the frist quadrant, we have

$$
\begin{equation*}
\lim _{\Delta z \rightarrow 0} \frac{\Delta f}{\Delta z}=\lim _{\theta \rightarrow 0} \frac{f\left(r e^{i \theta}\right)-f(r)}{r e^{i \theta}-r}=0 \tag{9}
\end{equation*}
$$

Then verify that as you approach the point $z=r$ along the real axis we have

$$
\begin{equation*}
\lim _{\Delta z \rightarrow 0} \frac{\Delta f}{\Delta z}=\lim _{\Delta x \rightarrow 0} \frac{(x+\Delta x)^{2}+y^{2}-\left(x^{2}+y^{2}\right)}{\Delta x}=2 x \tag{10}
\end{equation*}
$$

(c) Thus, conclude that the derivative is not isotropic for any z.
5. (20 points.) Check if the function

$$
\begin{equation*}
f(z)=\frac{1}{z} \tag{11}
\end{equation*}
$$

satisfies the Cauchy-Riemann conditions.
(a) Verify that the Cauchy-Riemann conditions for this case are not well defined at $z=0$, but are fine for $z \neq 0$.
(b) Verify that

$$
\begin{equation*}
\frac{d f}{d z}=-\frac{1}{z^{2}}, \quad z \neq 0 \tag{12}
\end{equation*}
$$

(c) Determine the limiting value of the derivative as you approach $z=0$ along the positive real line, and, then, when you approach along the negative real line. Repeat the analysis along the imaginary line. Repeat the analysis along the line $x=y$. Are these limits identical?
(d) If these limits are not identical conclude that the derivative is not isotropic at $z=0$. Then, the function is not analytic at $z=0$.

