Homework No. 08 (Fall 2023)

PHYS 500A: MATHEMATICAL METHODS
School of Physics and Applied Physics, Southern Illinois University-Carbondale Due date: Monday, 2023 Oct 23, 4.30pm

1. (20 points.) Evaluate the contour integral

$$
\begin{equation*}
I=\frac{1}{2 \pi i} \oint_{c} d z \frac{e^{i z}}{\left(z^{2}-a^{2}\right)}, \tag{1}
\end{equation*}
$$

where the contour c is a unit circle going counterclockwise with center at the origin. Inquire the cases when $|a|>1$ and $|a|<1$.
2. (20 points.) Evaluate the integral

$$
\begin{equation*}
\int_{-\infty}^{\infty} \frac{d x e^{i a x}}{x^{2}+1} \tag{2}
\end{equation*}
$$

using Cauchy's theorem, after choosing a suitable contour. Here a is real.
3. (20 points.) Consider the integral

$$
\begin{equation*}
I(a)=\frac{1}{2 \pi} \int_{0}^{2 \pi} d \theta \frac{1}{1-2 a \cos \theta+a^{2}}, \tag{3}
\end{equation*}
$$

where a is complex.
(a) Substitute $z=e^{i \theta}$, such that

$$
\begin{equation*}
2 \cos \theta=z+\frac{1}{z} \tag{4}
\end{equation*}
$$

and express the integral as a contour integral along the unit circle going counterclockwise. Locate the poles.
(b) Evaluate the residues and show that

$$
I(a)= \begin{cases}\frac{1}{1-a^{2}}, & \text { if }|a|<1 \tag{5}\\ \frac{1}{a^{2}-1}, & \text { if }|a|>1\end{cases}
$$

(c) Plot $I(a)$ for real values of a. Plot real and imaginary part of $I(a)$ for complex a. Argue that $I(1)$ is divergent.
4. (20 points.) The following lecture recording from Fall 2020 available at

```
https://youtu.be/9Ac-en8ImDw
```

motivates the idea of analytic continuation. Let us consider the function

$$
\begin{equation*}
\mu(s)=\frac{1}{s}, \quad s \neq 0 \tag{6}
\end{equation*}
$$

(a) An integral representation of the function is

$$
\begin{equation*}
\mu(s)=\int_{0}^{1} d t t^{s-1}, \quad \operatorname{Re}(s)>0 \tag{7}
\end{equation*}
$$

Evaluate the integral and show that the integral is indeed equal to $1 / s$ for $\operatorname{Re}(s)>0$. However, the above integral representation breaks down for $\operatorname{Re}(s) \leq 0$. Show that

$$
\begin{equation*}
\mu(0)=\int_{0}^{1} \frac{d t}{t}=\lim _{\delta \rightarrow 0} \int_{\delta}^{1} \frac{d t}{t}=-\lim _{\delta \rightarrow 0} \ln \delta \tag{8}
\end{equation*}
$$

is logarithmically divergent. Similarly, show that

$$
\begin{equation*}
\mu(-1)=\int_{0}^{1} \frac{d t}{t^{2}}=\lim _{\delta \rightarrow 0} \int_{\delta}^{1} \frac{d t}{t^{2}}=\lim _{\delta \rightarrow 0}\left[1-\frac{1}{\delta}\right] \frac{1}{(-1)} \tag{9}
\end{equation*}
$$

is divergent. Check out $\mu(-2)$.
(b) Another representation of the function valid on the complete complex plane of s is

$$
\begin{equation*}
\mu(s)=\frac{1}{\left(e^{i 2 \pi s}-1\right)} \int_{c} d z z^{s-1}, \quad s \neq 0 \tag{10}
\end{equation*}
$$

where the integral is evaluated on the contour $c=c_{1}+c_{2}+c_{3}$ described in Figure 1. Since the integral representation in Eq. (10) does not have the restriction $\operatorname{Re}(s)>$ 0 , and because its values are identical to the integral representation in Eq. (7) for $\operatorname{Re}(s)>0$, it is the analytic continuation of the integral representation in Eq. (7).
i. For contour c_{1} substitute $z=x e^{i \delta} \sim x+i x \delta$ and show that

$$
\begin{equation*}
\int_{c_{1}} d z z^{s-1}=\frac{1}{s}\left(\epsilon^{s}-1\right) \tag{11}
\end{equation*}
$$

ii. For contour c_{3} substitute $z=\epsilon e^{i \theta}$ and show that

$$
\begin{equation*}
\int_{c_{2}} d z z^{s-1}=\frac{1}{s}\left(e^{i 2 \pi s}-1\right) \epsilon^{s} \tag{12}
\end{equation*}
$$

iii. For contour c_{3} substitute $z=x e^{i(2 \pi-\delta)}$ and show that

$$
\begin{equation*}
\int_{c_{3}} d z z^{s-1}=\frac{1}{s}\left(1-\epsilon^{s}\right) e^{i 2 \pi s} \tag{13}
\end{equation*}
$$

Together, we have

$$
\begin{equation*}
\mu(s)=\frac{1}{\left(e^{i 2 \pi s}-1\right)} \frac{1}{s}\left[\left(\epsilon^{s}-1\right)+\left(e^{i 2 \pi s}-1\right) \epsilon^{s}+\left(1-\epsilon^{s}\right) e^{i 2 \pi s}\right]=\frac{1}{s} . \tag{14}
\end{equation*}
$$

Observe that the apparent divergence when the factor $\left(e^{i 2 \pi s}-1\right)$ equals 0 for integer s is nonexistent.

Figure 1: Contour $c=c_{1}+c_{2}+c_{3}$. The radius of the contour c_{2} is ϵ and contours c_{1} and c_{3} are δ away from the real line. We assume limits $\epsilon \rightarrow 0$ and $\delta \rightarrow 0$.

