Homework No. 09 (Fall 2023)

PHYS 500A: MATHEMATICAL METHODS
School of Physics and Applied Physics, Southern Illinois University-Carbondale Due date: Monday, 2023 Oct 30, 4.30pm

0 . Problems 3, 4, 5, and 9, are for submission. Rest are for practice.

1. (20 points.) A damped harmonic oscillator, constituting of a body of mass m and a spring of spring constant k, is described by

$$
\begin{equation*}
m a=-k x-b v \tag{1}
\end{equation*}
$$

where x is position, $v=d x / d t$ is velocity, $a=d v / d t$ is acceleration, and b is the damping coefficient. Thus, we have the differential equation

$$
\begin{equation*}
\left[\frac{d^{2}}{d t^{2}}+2 \gamma \frac{d}{d t}+\omega_{0}^{2}\right] x(t)=0 \tag{2}
\end{equation*}
$$

with initial conditions

$$
\begin{align*}
& x(0)=x_{0}, \tag{3a}\\
& \dot{x}(0)=v_{0}, \tag{3b}
\end{align*}
$$

where

$$
\begin{equation*}
\omega_{0}^{2}=\frac{k}{m}, \quad 2 \gamma=\frac{b}{m} \tag{4}
\end{equation*}
$$

(a) $\gamma=0$: In the absence of damping show that the solution is

$$
\begin{equation*}
x(t)=x_{0} \cos \omega_{0} t+\frac{v_{0}}{\omega_{0}} \sin \omega_{0} t . \tag{5}
\end{equation*}
$$

(b) $\gamma<\omega_{0}$: Underdamped harmonic oscillator.

$$
\begin{equation*}
x(t)=e^{-\gamma t}\left[x_{0} \cos \sqrt{\omega_{0}^{2}-\gamma^{2}} t+\frac{\left(v_{0}+\gamma x_{0}\right)}{\sqrt{\omega_{0}^{2}-\gamma^{2}}} \sin \sqrt{\omega_{0}^{2}-\gamma^{2}} t\right] . \tag{6}
\end{equation*}
$$

(c) $\gamma=\omega_{0}$: Critically damped harmonic oscillator.

$$
\begin{equation*}
x(t)=e^{-\omega_{0} t}\left[x_{0}+\left(v_{0}+\omega_{0} x_{0}\right) t\right] . \tag{7}
\end{equation*}
$$

(d) $\gamma>\omega_{0}$: Overdamped harmonic oscillator.

$$
\begin{equation*}
x(t)=e^{-\gamma t}\left[x_{0} \cosh \sqrt{\gamma^{2}-\omega_{0}^{2}} t+\frac{\left(v_{0}+\gamma x_{0}\right)}{\sqrt{\gamma^{2}-\omega_{0}^{2}}} \sinh \sqrt{\gamma^{2}-\omega_{0}^{2}} t\right] . \tag{8}
\end{equation*}
$$

(e) Set $\omega_{0}=1$, which is equivalent to the substitution $\omega_{0} t=\tau$, and sets the scale for the time t. That is, time is measured in units of $T=2 \pi / \omega_{0}$. The system is then completely characterized by the parameter γ / ω_{0} and the initial conditions x_{0} and v_{0}. Plot the solutions for the initial conditions $x_{0}=0$ and $v_{0}=1$.
2. (20 points.) Starting from the solution for the position of an underdamped harmonic oscillator $\left(\gamma<\omega_{0}\right)$,

$$
\begin{equation*}
x(t)=e^{-\gamma t}\left[x_{0} \cos \sqrt{\omega_{0}^{2}-\gamma^{2}} t+\frac{\left(v_{0}+\gamma x_{0}\right)}{\sqrt{\omega_{0}^{2}-\gamma^{2}}} \sin \sqrt{\omega_{0}^{2}-\gamma^{2}} t\right] \tag{9}
\end{equation*}
$$

obtain the solution for the velocity $v(t)=d x / d t$ of an underdamped harmonic oscillator $\left(\gamma<\omega_{0}\right)$ in the form

$$
\begin{equation*}
v(t)=e^{-\gamma t}\left[v_{0} \cos \sqrt{\omega_{0}^{2}-\gamma^{2}} t-\frac{\left(\omega_{0}^{2} x_{0}+\gamma v_{0}\right)}{\sqrt{\omega_{0}^{2}-\gamma^{2}}} \sin \sqrt{\omega_{0}^{2}-\gamma^{2} t}\right] . \tag{10}
\end{equation*}
$$

3. (20 points.) A critically damped harmonic oscillator is described by the differential equation

$$
\begin{equation*}
\left[\frac{d^{2}}{d t^{2}}+2 \omega_{0} \frac{d}{d t}+\omega_{0}^{2}\right] x(t)=0 \tag{11}
\end{equation*}
$$

where ω_{0} is a characteristic frequency. Find the solution $x(t)$ for initial conditions $x(0)=$ x_{0} and $\dot{x}(0)=0$. Plot $x(t)$ as a function of t in the following graph where $x_{0} e^{-\omega_{0} t}$ is already plotted for reference. For what t is the solution $x(t)$ a maximum?

Figure 1: Critically damped harmonic oscillator.
4. (20 points.) A critically damped harmonic oscillator is described by the differential equation

$$
\begin{equation*}
\left[\frac{d^{2}}{d t^{2}}+2 \omega_{0} \frac{d}{d t}+\omega_{0}^{2}\right] x(t)=0 \tag{12}
\end{equation*}
$$

where ω_{0} is a characteristic frequency. Find the solution $x(t)$ for initial conditions $x(0)=0$ and $\dot{x}(0)=v_{0}$. Plot $x(t)$ as a function of t in the graph in Figure 2, where ω_{0} and v_{0} / ω_{0} is used to set scales for time t and position $x(t)$. For what t is the solution $x(t)$ a maximum?

Figure 2: Critically damped harmonic oscillator.
5. (20 points.) A body experiencing only damping is described by the differential equation

$$
\begin{equation*}
\left[\frac{d^{2}}{d t^{2}}+2 \gamma \frac{d}{d t}\right] x(t)=0 \tag{13}
\end{equation*}
$$

where γ is a measure of the damping. Find the solution $x(t)$ for initial conditions $x(0)=x_{0}$ and $\dot{x}(0)=v_{0}$ to be

$$
\begin{equation*}
x(t)=x_{0}+\frac{v_{0}}{2 \gamma}\left[1-e^{-2 \gamma t}\right] . \tag{14}
\end{equation*}
$$

Obtain the above expression starting from the solution for the overdamped harmonic oscillator $\left(\gamma>\omega_{0}\right)$

$$
\begin{equation*}
x(t)=e^{-\gamma t}\left[x_{0} \cosh \sqrt{\gamma^{2}-\omega_{0}^{2}} t+\frac{\left(v_{0}+\gamma x_{0}\right)}{\sqrt{\gamma^{2}-\omega_{0}^{2}}} \sinh \sqrt{\gamma^{2}-\omega_{0}^{2} t}\right] \tag{15}
\end{equation*}
$$

by setting $\omega_{0}=0$. Interpret the solution for $v_{0}=0$, why isn't there no motion?
6. (20 points.) Starting from the solution for the underdamped harmonic oscillator ($\gamma<$ $\left.\omega_{0}\right)$,

$$
\begin{equation*}
x(t)=e^{-\gamma t}\left[x_{0} \cos \sqrt{\omega_{0}^{2}-\gamma^{2}} t+\frac{\left(v_{0}+\gamma x_{0}\right)}{\sqrt{\omega_{0}^{2}-\gamma^{2}}} \sin \sqrt{\omega_{0}^{2}-\gamma^{2}} t\right] \tag{16}
\end{equation*}
$$

obtain the solution for the overdamped harmonic oscillator $\left(\gamma>\omega_{0}\right)$,

$$
\begin{equation*}
x(t)=e^{-\gamma t}\left[x_{0} \cosh \sqrt{\gamma^{2}-\omega_{0}^{2}} t+\frac{\left(v_{0}+\gamma x_{0}\right)}{\sqrt{\gamma^{2}-\omega_{0}^{2}}} \sinh \sqrt{\gamma^{2}-\omega_{0}^{2}} t\right] . \tag{17}
\end{equation*}
$$

7. (20 points.) Starting from the solution for the underdamped harmonic oscillator ($\gamma<$ $\left.\omega_{0}\right)$,

$$
\begin{equation*}
x(t)=e^{-\gamma t}\left[x_{0} \cos \sqrt{\omega_{0}^{2}-\gamma^{2}} t+\frac{\left(v_{0}+\gamma x_{0}\right)}{\sqrt{\omega_{0}^{2}-\gamma^{2}}} \sin \sqrt{\omega_{0}^{2}-\gamma^{2}} t\right] \tag{18}
\end{equation*}
$$

obtain the solution for the critically damped harmonic oscillator $\left(\gamma=\omega_{0}\right)$,

$$
\begin{equation*}
x(t)=e^{-\omega_{0} t}\left[x_{0}+\left(v_{0}+\omega_{0} x_{0}\right) t\right] \tag{19}
\end{equation*}
$$

8. (20 points.) The solution for the underdamped harmonic oscillator $\left(\gamma<\omega_{0}\right)$ is

$$
\begin{equation*}
x(t)=e^{-\gamma t}\left[x_{0} \cos \sqrt{\omega_{0}^{2}-\gamma^{2}} t+\frac{\left(v_{0}+\gamma x_{0}\right)}{\sqrt{\omega_{0}^{2}-\gamma^{2}}} \sin \sqrt{\omega_{0}^{2}-\gamma^{2}} t\right] . \tag{20}
\end{equation*}
$$

For the initial condition $x_{0}=0$ we have

$$
\begin{equation*}
x(t)=\frac{v_{0} e^{-\gamma t}}{\sqrt{\omega_{0}^{2}-\gamma^{2}}} \sin \sqrt{\omega_{0}^{2}-\gamma^{2}} t \tag{21}
\end{equation*}
$$

Verify that the function

$$
\begin{equation*}
\frac{v_{0} e^{-\gamma t}}{\sqrt{\omega_{0}^{2}-\gamma^{2}}} \tag{22}
\end{equation*}
$$

is an envelope to the solution $x(t)$. Investigate if this is an envelope for the case $x_{0} \neq 0$.
9. (20 points.) Read the article titled 'Life at low Reynolds number' by E. M. Purcell, American Journal of Physics 45 (1977) 3. Here is the link to the article:

> http://dx.doi.org/10.1119/1.10903

Here is a question asked to verify the understanding of the concept being discussed in the paper. Imagine a micrometer sized bacteria, shaped like a human, swimming in water using the methods used by a typical human swimmer. Qualitatively describe the motion of this hypothetical bacteria.

