Homework No. 11 (Fall 2023)

PHYS 500A: MATHEMATICAL METHODS
School of Physics and Applied Physics, Southern Illinois University-Carbondale Due date: Monday, 2023 Nov 27, 4.30pm

1. ($\mathbf{2 0}$ points.) Verify the identity

$$
\begin{equation*}
\phi \boldsymbol{\nabla} \cdot(\lambda \boldsymbol{\nabla} \psi)-\psi \boldsymbol{\nabla} \cdot(\lambda \boldsymbol{\nabla} \phi)=\boldsymbol{\nabla} \cdot[\lambda(\phi \boldsymbol{\nabla} \psi-\psi \boldsymbol{\nabla} \phi)], \tag{1}
\end{equation*}
$$

which is a slight generalization of what is known as Green's second identity. Here ϕ, ψ, and λ, are position dependent functions.
2. (20 points.) The expression for the electric potential due to a point charge placed in front of a perfectly conducting semi-infinite slab, described by

$$
\frac{\varepsilon(z)}{\varepsilon_{0}}= \begin{cases}\infty, & z<0 \tag{2}\\ 1, & 0<z\end{cases}
$$

is given in terms of the reduced Green function that satisfies the differential equation $\left(0<\left\{z, z^{\prime}\right\}\right)$

$$
\begin{equation*}
-\left[\frac{\partial^{2}}{\partial z^{2}}-k^{2}\right] \varepsilon_{0} g\left(z, z^{\prime}\right)=\delta\left(z-z^{\prime}\right) \tag{3}
\end{equation*}
$$

with boundary conditions requiring the reduced Green's function to vanish at $z=0$ and at $z \rightarrow \infty$.
(a) Construct the reduced Green function in the form

$$
\varepsilon_{0} g\left(z, z^{\prime}\right)= \begin{cases}A e^{k z}+B e^{-k z}, & 0<z<z^{\prime} \tag{4}\\ C e^{k z}+D e^{-k z}, & 0<z^{\prime}<z\end{cases}
$$

and solve for the four coefficients, A, B, C, D, using the conditions

$$
\begin{align*}
\varepsilon_{0} g\left(0, z^{\prime}\right) & =0, \tag{5a}\\
\varepsilon_{0} g\left(\infty, z^{\prime}\right) & =0, \tag{5b}\\
\left.\varepsilon_{0} g\left(z, z^{\prime}\right)\right|_{z=z^{\prime}+\delta} ^{z=z^{\prime}+\delta} & =0, \tag{5c}\\
\left.\partial_{z} \varepsilon_{0} g\left(z, z^{\prime}\right)\right|_{z=z^{\prime}-\delta} ^{z=z^{\prime}+\delta} & =-1 . \tag{5d}
\end{align*}
$$

(b) Express the solution in the form

$$
\begin{equation*}
\varepsilon_{0} g\left(z, z^{\prime}\right)=\frac{1}{2 k} e^{-k\left|z-z^{\prime}\right|}-\frac{1}{2 k} e^{-k|z|} e^{-k\left|z^{\prime}\right|} . \tag{6}
\end{equation*}
$$

3. ($\mathbf{2 0}$ points.) The expression for the electric potential due to a point charge placed in between two parallel grounded perfectly conducting semi-infinite slabs, described by

$$
\frac{\varepsilon(z)}{\varepsilon_{0}}=\left\{\begin{array}{l}
\infty, \quad z<0 \tag{7}\\
1, \quad 0<z<a \\
\infty, \quad a<z
\end{array}\right.
$$

is given in terms of the reduced Green function that satisfies the differential equation $\left(0<\left\{z, z^{\prime}\right\}<a\right)$

$$
\begin{equation*}
\left[-\frac{\partial^{2}}{\partial z^{2}}+k^{2}\right] \varepsilon_{0} g\left(z, z^{\prime}\right)=\delta\left(z-z^{\prime}\right) \tag{8}
\end{equation*}
$$

with boundary conditions requiring the reduced Green's function to vanish at $z=0$ and $z=a$.
(a) Construct the reduced Green's function in the form

$$
\varepsilon_{0} g\left(z, z^{\prime}\right)= \begin{cases}A \sinh k z+B \cosh k z, & 0<z<z^{\prime}<a \tag{9}\\ C \sinh k z+D \cosh k z, & 0<z^{\prime}<z<a\end{cases}
$$

and solve for the four coefficients, A, B, C, D, using the conditions

$$
\begin{align*}
\varepsilon_{0} g\left(0, z^{\prime}\right) & =0, \tag{10a}\\
\varepsilon_{0} g\left(a, z^{\prime}\right) & =0, \tag{10b}\\
\left.\varepsilon_{0} g\left(z, z^{\prime}\right)\right|_{z=z^{\prime}-\delta} ^{z=z^{\prime}+\delta} & =0, \tag{10c}\\
\left.\partial_{z} \varepsilon_{0} g\left(z, z^{\prime}\right)\right|_{z=z^{\prime}-\delta} ^{z=z^{\prime}+\delta} & =-1 . \tag{10d}
\end{align*}
$$

(b) After using conditions in Eqs. (10a) and (10b) show that the reduced Green's function can be expressed in the form

$$
\varepsilon_{0} g\left(z, z^{\prime}\right)= \begin{cases}A \sinh k z, & 0<z<z^{\prime}<a \tag{11}\\ C^{\prime} \sinh k(a-z), & 0<z^{\prime}<z<a\end{cases}
$$

where $C^{\prime}=-C / \cosh k a$. Then, use Eqs. (10c) and (10d) to show that

$$
\varepsilon_{0} g\left(z, z^{\prime}\right)= \begin{cases}\frac{\sinh k z \sinh k\left(a-z^{\prime}\right)}{k \sinh k a}, & 0<z<z^{\prime}<a \tag{12}\\ \frac{\sinh k z^{\prime} \sinh k(a-z)}{k \sinh k a}, & 0<z^{\prime}<z<a\end{cases}
$$

(c) Take the limit $k a \rightarrow \infty$ in your solution above, (which corresponds to moving the slab at $z=a$ to infinity,) to obtain the reduced Green's function for a single perfectly conducting slab,

$$
\begin{equation*}
\lim _{k a \rightarrow \infty} \varepsilon_{0} g\left(z, z^{\prime}\right)=\frac{1}{2 k} e^{-k\left|z-z^{\prime}\right|}-\frac{1}{2 k} e^{-k|z|} e^{-k\left|z^{\prime}\right|} . \tag{13}
\end{equation*}
$$

This should serve as a check for your solution to the reduced Green's function. Hint: The hyperbolic functions here are defined as

$$
\begin{equation*}
\sinh x=\frac{1}{2}\left(e^{x}-e^{-x}\right) \quad \text { and } \quad \cosh x=\frac{1}{2}\left(e^{x}+e^{-x}\right) . \tag{14}
\end{equation*}
$$

