# Homework No. 13 (Fall 2023) 

PHYS 500A: MATHEMATICAL METHODS
School of Physics and Applied Physics, Southern Illinois University-Carbondale Due date: Friday, 2023 Dec 8, 4.30pm

1. (20 points.) The Legendre polynomials are defined, or generated, by expanding the electric (or gravitational) potential of a point charge (or mass),

$$
\begin{equation*}
\frac{\alpha}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}=\frac{\alpha}{r_{>}} \frac{1}{\sqrt{1+\left(\frac{r_{<}}{r_{>}}\right)^{2}-2\left(\frac{r_{<}}{r_{>}}\right) \cos \gamma}}=\frac{\alpha}{r_{>}} \sum_{l=0}^{\infty}\left(\frac{r_{<}}{r_{>}}\right)^{l} P_{l}(\cos \gamma), \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
\hat{\mathbf{r}} \cdot \hat{\mathbf{r}}^{\prime}=\cos \gamma=\cos \theta \cos \theta^{\prime}+\sin \theta \sin \theta^{\prime} \cos \left(\phi-\phi^{\prime}\right) \tag{2}
\end{equation*}
$$

and

$$
\begin{align*}
& r_{<}=\operatorname{Minimum}\left(r, r^{\prime}\right)  \tag{3a}\\
& r_{>}=\operatorname{Maximum}\left(r, r^{\prime}\right) . \tag{3b}
\end{align*}
$$

Thus, in terms of variables

$$
\begin{equation*}
t=\frac{r_{<}}{r_{>}}, \quad 0 \leq t<\infty \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
x=\cos \gamma, \quad-1 \leq x<1, \tag{5}
\end{equation*}
$$

we define the generating function for the Legendre polynomials as

$$
\begin{equation*}
g(t, x)=\frac{1}{\sqrt{1+t^{2}-2 x t}}=\sum_{l=0}^{\infty} t^{l} P_{l}(x) \tag{6}
\end{equation*}
$$

The recurrence relation for Legendre polynomials can be derived by differentiating the generating function with respect to $t$ to obtain

$$
\begin{equation*}
\frac{\partial g}{\partial t}=\frac{(x-t)}{\left(1+t^{2}-2 x t\right)^{\frac{3}{2}}}=\sum_{l=1}^{\infty} l t^{l-1} P_{l}(x) \tag{7}
\end{equation*}
$$

Inquire why the sum on the right hand side now starts from $l=1$. The second equality can be rewritten in the form

$$
\begin{equation*}
\frac{(x-t)}{\sqrt{1+t^{2}-2 x t}}=\left(1+t^{2}-2 x t\right) \sum_{l=1}^{\infty} l t^{l-1} P_{l}(x) \tag{8}
\end{equation*}
$$

and implies

$$
\begin{equation*}
(x-t) \sum_{l=0}^{\infty} t^{l} P_{l}(x)=\left(1+t^{2}-2 x t\right) \sum_{l=1}^{\infty} l t^{l-1} P_{l}(x) \tag{9}
\end{equation*}
$$

Express this in the form

$$
\begin{align*}
t^{0}\left[x P_{0}(x)-P_{1}(x)\right] & +t^{1}\left[3 x P_{1}(x)-P_{0}(x)-2 P_{2}(x)\right] \\
& +\sum_{l=2}^{\infty} t^{l}\left[(2 l+1) x P_{l}(x)-l P_{l-1}(x)-(l+1) P_{l+1}(x)\right]=0 \tag{10}
\end{align*}
$$

Thus, using the completeness property of Taylor expansion, that is, expansion in powers of $t$, we have,

$$
\begin{align*}
P_{1}(x) & =x P_{0}(x)  \tag{11}\\
2 P_{2}(x) & =3 x P_{1}(x)-P_{0}(x), \tag{12}
\end{align*}
$$

and

$$
\begin{equation*}
(l+1) P_{l+1}(x)=(2 l+1) x P_{l}(x)-l P_{l-1}(x), \quad l=1,2,3, \ldots \tag{13}
\end{equation*}
$$

This generates Legendre polynomials of all orders starting from

$$
\begin{equation*}
P_{0}(x)=1 . \tag{14}
\end{equation*}
$$

2. (20 points.) Using Mathematica (or another graphing tool) plot the Legendre polynomials $P_{l}(x)$ for $l=0,1,2,3,4$ on the same plot. Note that $-1 \leq x \leq 1$. Based on the pattern you see what can you conclude about the number of roots for $P_{l}(x)$. In Mathematica these plots are generated using the following commands:
Plot $[\{$ LegendreP $[0, x]$, LegendreP $[1, x]$, LegendreP $[2, x]$, LegendreP [3, $x]$,
LegendreP [4, x$]\},\{\mathrm{x},-1,1\}]$
Compare your plots with those in Wikipedia article on 'Legendre Polynomials'. While there read the Wikipedia article on Adrien-Marie Legendre and the associated 'Portrait Debacle'.
3. (20 points.) Legendre polynomials are conveniently generated using the relation

$$
\begin{equation*}
P_{l}(x)=\left(\frac{d}{d x}\right)^{l} \frac{\left(x^{2}-1\right)^{l}}{2^{l} l!}, \tag{15}
\end{equation*}
$$

where $-1 \leq x \leq 1$. Evaluate Legendre polynomials of degree $l=0,1,2,3,4$ in this manner.
4. (20 points.) Legendre polynomials satisfy the differential equation

$$
\begin{equation*}
\left[\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \sin \theta \frac{\partial}{\partial \theta}+l(l+1)\right] P_{l}(\cos \theta)=0 \tag{16}
\end{equation*}
$$

Verify this explicitly for $l=0,1,2,3,4$.
5. (20 points.) Legendre polynomials satisfy the orthogonality relation

$$
\begin{equation*}
\int_{-1}^{1} d x P_{l}(x) P_{l^{\prime}}(x)=\frac{2}{2 l+1} \delta_{l l^{\prime}} \tag{17}
\end{equation*}
$$

Verify this explicitly for $l=0,1,2$ and $l^{\prime}=0,1,2$. The orthogonality relation is also expressed as

$$
\begin{equation*}
\int_{0}^{\pi} \sin \theta d \theta P_{l}(\cos \theta) P_{l^{\prime}}(\cos \theta)=\frac{2}{2 l+1} \delta_{l l^{\prime}} \tag{18}
\end{equation*}
$$

