
Homework No. 13 (Fall 2023)
PHYS 500A: MATHEMATICAL METHODS

School of Physics and Applied Physics, Southern Illinois University–Carbondale

Due date: Friday, 2023 Dec 8, 4.30pm

1. (20 points.) The Legendre polynomials are defined, or generated, by expanding the
electric (or gravitational) potential of a point charge (or mass),
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where
r̂ · r̂′ = cos γ = cos θ cos θ′ + sin θ sin θ′ cos(φ− φ′), (2)

and

r< = Minimum(r, r′), (3a)

r> = Maximum(r, r′). (3b)

Thus, in terms of variables
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and
x = cos γ, −1 ≤ x < 1, (5)

we define the generating function for the Legendre polynomials as
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The recurrence relation for Legendre polynomials can be derived by differentiating the
generating function with respect to t to obtain
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Inquire why the sum on the right hand side now starts from l = 1. The second equality
can be rewritten in the form
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and implies
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Express this in the form
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Thus, using the completeness property of Taylor expansion, that is, expansion in powers
of t, we have,

P1(x) = xP0(x), (11)

2P2(x) = 3xP1(x)− P0(x), (12)

and
(l + 1)Pl+1(x) = (2l + 1)xPl(x)− l Pl−1(x), l = 1, 2, 3, . . . . (13)

This generates Legendre polynomials of all orders starting from

P0(x) = 1. (14)

2. (20 points.) Using Mathematica (or another graphing tool) plot the Legendre polyno-
mials Pl(x) for l = 0, 1, 2, 3, 4 on the same plot. Note that −1 ≤ x ≤ 1. Based on the
pattern you see what can you conclude about the number of roots for Pl(x). In Mathe-
matica these plots are generated using the following commands:
Plot[{LegendreP[0,x], LegendreP[1,x], LegendreP[2,x], LegendreP[3,x],

LegendreP[4,x] },{x,-1,1}]
Compare your plots with those in Wikipedia article on ‘Legendre Polynomials’. While
there read the Wikipedia article on Adrien-Marie Legendre and the associated ‘Portrait
Debacle’.

3. (20 points.) Legendre polynomials are conveniently generated using the relation
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(
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, (15)

where −1 ≤ x ≤ 1. Evaluate Legendre polynomials of degree l = 0, 1, 2, 3, 4 in this
manner.

4. (20 points.) Legendre polynomials satisfy the differential equation
[
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]

Pl(cos θ) = 0. (16)

Verify this explicitly for l = 0, 1, 2, 3, 4.
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5. (20 points.) Legendre polynomials satisfy the orthogonality relation
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Verify this explicitly for l = 0, 1, 2 and l′ = 0, 1, 2. The orthogonality relation is also
expressed as
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