# Homework No. 01 (Fall 2024)

#### PHYS 205A-002: UNIVERSITY PHYSICS

School of Physics and Applied Physics, Southern Illinois University-Carbondale
Due date: Friday, 2024 Aug 23, 2:00 PM, on D2L

### Instructions

- You are encouraged to use any of the resources to complete this homework. However, the extent to which you depend on resources while doing this homework is a measure of how much extra work you need to put in to master the associated concepts. Solutions should be the last resource.
- Links to solutions are provided. Further, links to few variations of the problem are provided that serve as practice problems.
- Describe your thought process in detail and organize it clearly. Make sure your answer has units and right number of significant digits.
- Additional problems, with hyperlinks to exams, are available in Lecture Notes.
- After completion, scan the pages as a single PDF file, and submit the file on D2L (under Assessments → Assignments). You can replace your PDF file, only the last file is graded.

## **Problems**

1. (10 points.) The corners of a square lie on a circle of radius R. Find the area of the square as a function of R.

Solution

2. (10 points.) What can you deduce about the physical quantity c in the famous equation

$$E = mc^2, (1)$$

if the energy E has the dimensions  $ML^2T^{-2}$  and mass m has the dimension M. In particular, what is the dimension of c? That is, given

$$[c] = M^{\alpha} L^{\beta} T^{\gamma}, \tag{2}$$

determine  $\alpha$ ,  $\beta$ , and  $\gamma$ .

[Solution]

3. (10 points.) Consider the mathematical expression

$$x = vt + \frac{1}{2!}at^2 + \frac{1}{3!}bt^3 + \frac{1}{4!}ct^4,$$
 (3)

where x is measured in units of distance and t is measured in units of time. Determine the dimension of the physical quantity represented by the symbol b. That is, given

$$[b] = M^{\alpha} L^{\beta} T^{\gamma}, \tag{4}$$

determine  $\alpha$ ,  $\beta$ , and  $\gamma$ .

## [Solution]

4. (10 points.) Consider the mathematical expression

$$x = Ae^{-\omega t}, (5)$$

where x is measured in units of distance and t is measured in units of time. Evaluate  $\frac{dx}{dt}$ . Then, determine the dimension of  $\omega A$ . That is, given

$$[\omega A] = M^{\alpha} L^{\beta} T^{\gamma}, \tag{6}$$

determine  $\alpha$ ,  $\beta$ , and  $\gamma$ .

# [Solution]

- 5. (10 points.) Complete the operations and express your answer in scientific notation with correct number of significant digits.
  - (a)  $345 \times 72$
  - (b)  $55 \div 11$
  - (c) 34.3456 + 42.1
  - (d) 46.32 56.92345
  - (e) 15600 12

## [Solution]