Homework No. 05 (Fall 2024) PHYS 205B: UNIVERSITY PHYSICS

School of Physics and Applied Physics, Southern Illinois University-Carbondale

Due date: Thursday, 2024 Sep 26, 9:30 AM, on D2L

Instructions

- You are encouraged to use any of the resources to complete this homework. However, the
 extent to which you depend on resources while doing homework is usually a measure of
 how much extra work you need to put in to master the associated concepts. Solutions
 should be the last resource.
- Describe your thought process in detail and organize it clearly. Make sure your answer has units and the right number of significant digits.
- Additional problems, with hyperlinks to exams, are available in Lecture Notes.
- After completion, scan the pages as a single PDF file, and submit the file on D2L (under Assessments → Assignments).

Problems

1. (10 points.) Derive the capacitance of a cylindrical capacitor consisting of coaxial conducting cylinders of length L. The capacitor consists of a solid cylinder of radius a and another cylinderical conducting shell of radius b > a.

Solution

- 2. (10 points.) A capacitor of capacitance $10.0\,\mathrm{nF}$ is connected to a $10.0\,\mathrm{V}$ balltery. Let us assume that the capacitor consists of two parallel plates of area A separated by distance d.
 - (a) Determine the charge accumulated on each plate of the capacitor.
 - (b) Determine the energy stored in the capacitor.

Solution

3. (10 points.) Determine the equivalent capacitance between points A and B in the circuit in Figure 1. Given $C_1 = 1.0 \,\mu\text{F}$, $C_2 = 2.0 \,\mu\text{F}$, $C_3 = 3.0 \,\mu\text{F}$, and $C_4 = 4.0 \,\mu\text{F}$.

Solution

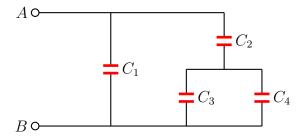


Figure 1: Problem 3

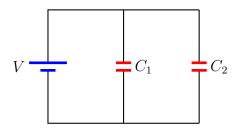


Figure 2: Problem 4

- 4. (10 points.) A potential difference $V = 10.0 \,\mathrm{V}$ is applied across a capacitor arrangement with two capacitances connected in parallel, $C_1 = 10.0 \,\mu\mathrm{F}$ and $C_2 = 20.0 \,\mu\mathrm{F}$. See Figure 2.
 - (a) Find the equivalent capacitance.
 - (b) Find the charges Q_1 and Q_2 on each of the capacitors.
 - (c) Find the voltages V_1 and V_2 across each of the capacitors.
 - (d) Find the potential energies U_1 and U_2 stored inside each of the capacitors.
 - (e) Find the ratio V_1/V_2 of the voltages across the capacitors.
 - (f) Find the ratio Q_1/Q_2 of the charges on the capacitors.
 - (g) Find the ratio U_1/U_2 of the potential energies stored inside the capacitors.

Solution

- 5. (10 points.) A potential difference $V=10.0\,\mathrm{V}$ is applied across a capacitor arrangement with two capacitances connected in series, $C_1=10.0\,\mu\mathrm{F}$ and $C_2=20.0\,\mu\mathrm{F}$. See Figure 3.
 - (a) Find the equivalent capacitance.
 - (b) Find the charges Q_1 and Q_2 on each of the capacitors.
 - (c) Find the voltages V_1 and V_2 across each of the capacitors.

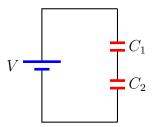


Figure 3: Problem 5

- (d) Find the potential energies U_1 and U_2 stored inside each of the capacitors.
- (e) Find the ratio V_1/V_2 of the voltages across the capacitors.
- (f) Find the ratio Q_1/Q_2 of the charges on the capacitors.
- (g) Find the ratio U_1/U_2 of the potential energies stored inside the capacitors.

Solution

6. (10 points.) In the circuit in Figure 4 determine the charge on capacitor C_3 . Let $V = 10.0 \,\text{V}$, $C_1 = 10.0 \,\text{nF}$, $C_2 = 20.0 \,\text{nF}$, and $C_3 = 30.0 \,\text{nF}$.

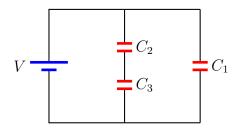


Figure 4: Problem 6.

Solution (Erratum: The units in Solution should be nF, not μ F.)