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1. (20 points.) The generating function for the spherical harmonics, Y},,(0, ¢), is
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where the left hand side is expressed in terms of

r = r(sin 6 cos ¢, sin # sin ¢, cos 0), (2)
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and the right hand side consists of
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An example of a null-vector is

and

a=(—icosa,—isina,1). (6)
(a) Identify the corresponding y. in Eq. (3) to show that, now, ¢y, in Eq. (1) is
—im(a—g)
e
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(b) Then, integrate Eq. (1) to derive an integral representation for spherical harmonics,
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(c) By setting m = 0 derive the corresponding integral representation for Legendre
polynomial P;(cos6):
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(d) Use the integral representation for Jy(t),
2m do .
t) = 7 itcosa 1
nit) = [ g, (10)
to show that

I
Py(cosf) = (cosé’ — sin 9%) Jo(t)

(11)

t=0
Verify this for [ =0, 1, 2.

(e) Now let # = x/l and, for fixed x, consider the limit [ — oo, to obtain

. x
}H?Opl (cos 7) = Jo(z), (12)
which is often used in the approximate form
f<1,l>1: Py(cos ) ~ Jy(10). (13)

(f) For what geometrical reason does one expect an asymptotic connection between
spherical and cylindrical coordinate functions?

a O\ (b O\ 10 ,0
(Fea) (o) = msr 14

Find the numbers a and b.

2. (20 points.) Given

3. (20 points.) Polynomials (a-r)’ of degree [ satisfy the Laplacian when a is a null-vector,
that is,

(a-a)=0. (15)
(a) Show that
Via-r) =1(-1)(a-r)"P(a-a), (16)
and conclude
Vi(a-r) = 0. (17)
(b) Write the polynomial construction in the form
(a-r) =rl(a-t). (18)

Observe that (a - #)! has no radial dependence. Thus, in this form, the radial and
angular dependence is separated. Starting from the Laplacian in spherical polar

coordinates,
10,0 11 0 . 0 1 9?2 .
s | @0 =0 (9
deduce
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(c¢) Show that
10 ,0 7!

Thus, derive the differential equation for the generating function
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(d) Use the generating function
AN l
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written in terms of
g yer
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to derive the differential equation for spherical harmonics

1 9 . ,0 1 02

Snoos 39+sin2«98¢2+ (I +1)| Yim(0,0) =0 (25)
4. (20 points.) For a null-vector a, that satisfies
a-a= 0, (26)

the polynomial (a - #)! of degree [ is the generating function of spherical harmonics
Yim(0,¢). To derive the orthonormality properties of spherical harmonics let us con-
sider the product of two generating functions, with null-vectors a and a*, integrated over
all the angles,

/ dQ(a* - #)(a- 1), (27)

where

dQ) = sin 0dOde. (28)

(a) After integration over the angles the product of the two generating functions is a
scalar. Thus, it has to be constructed out of (a-a), (a*-a*), and (a* - a). Since
(a-a) =0 and (a*-a*) = 0, the integral has to be constructed out of (a* - a). This
is possible only if [ = I’. Together, we conclude

/ dQ (a* - #)(a-#)" = op(a* - a)lCy, (29)

in terms of arbitrary constant Cj.



(b)

To determine C} choose
a=(1,4,0).

(30)

For this choice of null-vector, evaluate a* = (1,—4,0), (a-t) = sinfe, (a* - t) =

sinfe~* and (a* -a) = 2. Thus, find

47
C = 5 / dt(1 — %),
after substituting cosf = t. Evaluate

00:471'.

Integrate by parts in the integral for C; to derive the recurrence relation

l

C= GG
Evaluate
421!
TRl
Thus, conclude l , o
a*-r)(a-r a*-a)2
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For null-vectors constructed out of y. in the form
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Using the generating function
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show that
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Thus, comparing the two sides of the equality, read out the orthonormality condition
for the spherical harmonics,

/dQ (0, 0) Y1 (0, 0) = OOy - (41)
5. (20 points.) Check the orthonormality condition for the spherical harmonics

/dQ }/}:7,(97 ¢)Y2’m’(97 ¢) = 5ll’5mm’ (42)

forl=1,m = 1,I'=2,m' = 1, by explicitly evaluating the integral on the left hand side.



