
Homework No. 04 (Fall 2024)
PHYS 500A: MATHEMATICAL METHODS

School of Physics and Applied Physics, Southern Illinois University–Carbondale

Due date: Monday, 2024 Sep 23, 4.30pm

1. (20 points.) For a given complex number z, say

z =
√
2 ei

π

3 , (1)

evaluate
z2, z3, z4, z5, z6, z7, z8, z9, z10. (2)

Mark all of them on the complex plane. Decipher the pattern.

2. (20 points.) Evaluate
(

1

2
+ i

√
3

2

)23

. (3)

Mark the resulting number on the complex plane.

3. (20 points.) Prove the identity

tan−1

(

1

2

)

+ tan−1

(

1

3

)

=
π

4
. (4)

Use the identity
(2 + i)(3 + i) = 5 + i5. (5)

Similarly, find y/x in the relation

tan−1

(

3

2

)

+ tan−1

(

1

5

)

= tan−1

(y

x

)

. (6)

4. (20 points.) Verify that √
−2

√
−3 = −

√
6. (7)

However, it is often tempting to conclude

√
−2

√
−3 =

√

(−2)(−3) =
√
6. (8)

The ambiguity in the interpretation of
√
−2 and

√
−3 is (partly) removed by writing,

√
−2 =

(

2eiπ
)

1

2 =
√
2ei

π

2 , (9a)
√
−3 =

(

3eiπ
)

1

2 =
√
3ei

π

2 . (9b)
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This only partly removes the ambiguity because
√
−2 and

√
−3 have two independent

roots each and Eqs. (9) only identifies one of the roots, the principal root, for each. Using
Eqs. (9) verify the correctness of the statement in Eq. (7) again. The above ambiguity in
the interpretation and the related confusions plagued the development of ideas related to
complex numbers until the geometric visualization of a complex number using Argand
diagram (magnitude and direction in polar representation) was discovered by Wessel in
1797 and popularized by Argand in 1806. Without this geometric interpretation even
Euler fell into the trap of concluding

√
−2

√
−3 =

√
6. So, is the statement in Eq. (8)

erroneous? No. To this end, let us remove the ambiguity completely by recognizing the
multiplicities in the roots,

√
−2 =

(

2eiπ
)

1

2 =
√
2ei

π

2 (1, ω), ω = eiπ, (10a)
√
−3 =

(

3eiπ
)

1

2 =
√
3ei

π

2 (1, ω), ω = eiπ, (10b)

where comma-separated quantities contribute to multiplicities in roots. Muliplication of
the two roots of

√
−2 and two roots of

√
−3 leads to four possibilities,

(1, ω)× (1, ω) → (1, ω, ω, ω2). (11)

Using ω2 = 1, only two out of four possibilities are independent. Thus, we have

√
−2

√
−3 =

√
2
√
3(1, ω), ω = eiπ. (12)

In summary, both the statements in Eqs. (7) and (8) are correct.

5. (20 points.) The close connection between the geometry of a complex number

z = x+ iy (13)

and a two-dimensional vector
r = x î+ y ĵ (14)

is intriguing. They have the same rules for addition and subtraction, but differ in their
rules for multiplication. Show that

z∗
1
z2 = (r1 · r2) + i(r1 × r2) · k̂. (15)

In the quest for a number system that corresponds to a three dimensional vector, Hamilton
in 1843 invented the quaternions. A quaternion P can be expressed in terms of Pauli
matrices as

P = a0 − ia · σ. (16)

Recall that the Pauli matrices are completely characterized by the identity

(a · σ)(b · σ) = (a · b) + i(a× b) · σ. (17)
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(a) Show that the (Hamilton) product of two quaternions,

P = a0 − ia · σ, (18a)

Q = b0 − ib · σ, (18b)

is given by
PQ = (a0b0 − a · b)− i(a0b+ b0a+ a× b) · σ. (19)

(b) Verify that the Hamilton product is non-commutative. Determine
[

P,Q
]

.
Solution:

[

P,Q
]

= −2i(a× b) · σ. (20)

6. (20 points.) Find the fifth roots of unity by solving the equation

z5 = 1. (21)

Mark the points corresponding to the five roots on the complex plane. Find the five roots
of the equation

z5 = −1. (22)

Mark the roots on the complex plane. Next, find the roots of the equation

z5 = i (23)

and mark the roots on the complex plane. Repeat the exercise for z5 = −i. How do these
roots match with the fifth roots of unity? Recognize the pattern.

7. (20 points.) Locate z = πi on the complex plane.
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