Homework No. 10 (Fall 2024)

PHYS 500A: MATHEMATICAL METHODS

School of Physics and Applied Physics, Southern Illinois University–Carbondale Due date: Friday, 2024 Nov 22, 4.30pm

- 0. Problems 4, 5, 6, 7, 8, 9, and 10, are for submission.
- 1. (**Recurrence relation.**) The Legendre polynomials $P_l(x)$ of degree l are defined, or generated, by expanding the electric (or gravitational) potential of a point charge,

$$
\frac{\alpha}{|\mathbf{r} - \mathbf{r}'|} = \frac{\alpha}{r} \frac{1}{\sqrt{1 + \left(\frac{r}{r} \right)^2 - 2\left(\frac{r}{r} \right) \cos \gamma}} = \frac{\alpha}{r} \sum_{l=0}^{\infty} \left(\frac{r}{r} \right)^l P_l(\cos \gamma), \tag{1}
$$

where

$$
\hat{\mathbf{r}} \cdot \hat{\mathbf{r}}' = \cos \gamma = \cos \theta \cos \theta' + \sin \theta \sin \theta' \cos(\phi - \phi'),\tag{2}
$$

and

$$
r_{\leq} = \text{Minimum}(r, r'),\tag{3a}
$$

$$
r_{>} = \text{Maximum}(r, r'). \tag{3b}
$$

Thus, in terms of variables

$$
t = \frac{r}{r_{>}}, \qquad 0 \le t < \infty,
$$
\n⁽⁴⁾

and

$$
x = \cos \gamma, \qquad -1 \le x < 1,\tag{5}
$$

we can define the generating function for the Legendre polynomials as

$$
g(t,x) = \frac{1}{\sqrt{1+t^2 - 2xt}} = \sum_{l=0}^{\infty} t^l P_l(x).
$$
 (6)

Setting $t = 0$ in the above relation we immediately learn that

$$
P_0(x) = 1.\t\t(7)
$$

Legenendre polynomials of higher degrees can be derived by Taylor expansion of the generating function. However, for large degrees it is more efficient to derive a recurrence relation. To derive the recurrence relation for Legendre polynomials we begin by differentiating the generating function with respect to t to obtain

$$
\frac{\partial g}{\partial t} = \frac{(x-t)}{(1+t^2 - 2xt)^{\frac{3}{2}}} = \sum_{l=1}^{\infty} l t^{l-1} P_l(x).
$$
\n(8)

Inquire why the sum on the right hand side now starts from $l = 1$. The second equality can be rewritten in the form

$$
\frac{(x-t)}{\sqrt{1+t^2-2xt}} = (1+t^2-2xt)\sum_{l=1}^{\infty} l t^{l-1} P_l(x),\tag{9}
$$

and implies

$$
(x-t)\sum_{l=0}^{\infty} t^l P_l(x) = (1+t^2 - 2xt) \sum_{l=1}^{\infty} l t^{l-1} P_l(x).
$$
 (10)

Express this in the form

$$
t^{0}\left[xP_{0}(x)-P_{1}(x)\right] + t^{1}\left[3xP_{1}(x)-P_{0}(x)-2P_{2}(x)\right] + \sum_{l=2}^{\infty} t^{l}\left[(2l+1)x P_{l}(x)-l P_{l-1}(x)-(l+1) P_{l+1}(x)\right]=0.
$$
 (11)

Thus, using the completeness property of Taylor expansion, that is, equating the coefficients of powers of t in the expansion, we have, for t^0 and t^1 ,

$$
P_1(x) = xP_0(x),\tag{12a}
$$

$$
2P_2(x) = 3xP_1(x) - P_0(x),
$$
\n(12b)

and matching powers of t^l for $l \geq 2$ we obtain the recurrence relation for Legendre polynomials as

$$
(l+1) P_{l+1}(x) = (2l+1)x P_l(x) - l P_{l-1}(x), \qquad l = 0, 1, 2, 3, \dots
$$
 (13)

Note that the recurrence relations in Eq. [\(16\)](#page-1-0), for $l = 0$ and $l = 1$, reproduces Eqs. [\(12\)](#page-1-1). The recurrence relations in Eq. (16) can be reexpressed in the form

$$
l P_l(x) = (2l - 1)x P_{l-1}(x) - (l - 1) P_{l-2}(x), \qquad l = 1, 2, 3, \qquad (14)
$$

Thus, Eq. [\(14\)](#page-1-2) generates Legendre polynomials of all degrees starting from $P_0(x) = 1$, which was obtained in Eq. [\(7\)](#page-0-0).

2. (Differential equation.) The generating function for the Legendre polynomials $P_l(x)$ of degree l is

$$
g(t,x) = \frac{1}{\sqrt{1+t^2 - 2xt}} = \sum_{l=0}^{\infty} t^l P_l(x).
$$
 (15)

(a) Starting from the generating function and differentiating with respect to t we derived the recurrence relation for Legendre polynomials in Eq. [\(16\)](#page-1-0),

$$
(l+1) P_{l+1}(x) = (2l+1)x P_l(x) - l P_{l-1}(x), \qquad l = 0, 1, 2, \dots,
$$
 (16)

in terms of

$$
P_0(x) = 1 = g(0, x). \tag{17}
$$

Differentiating the recurrence relation with respect to x show that

$$
(2l+1) P_l + (2l+1)x P'_l = l P'_{l-1} + (l+1) P'_{l+1}, \qquad l = 0, 1, 2, \dots,
$$
 (18)

where we supressed the dependence in x and prime in the superscript of $P_l'(x)$ denotes derivative with respect to the argument x .

(b) Differentiating the generating function with respect to x show that

$$
\frac{\partial g}{\partial x} = \frac{t}{(1+t^2 - 2xt)^{\frac{3}{2}}} = \sum_{l=0}^{\infty} t^l P'_l(x).
$$
 (19)

Show that the second equality can be rewritten in the form

$$
\frac{t}{\sqrt{1+t^2-2xt}} = (1+t^2-2xt)\sum_{l=0}^{\infty} t^l P'_l(x),\tag{20}
$$

and implies

$$
t\sum_{l=0}^{\infty} t^l P_l(x) = (1 + t^2 - 2xt) \sum_{l=0}^{\infty} t^l P'_l(x).
$$
 (21)

Express this in the form

$$
t^{0}\left[P'_{0}(x)\right] + t^{1}\left[P'_{1}(x) - 2xP'_{0}(x) - P_{0}(x)\right] + \sum_{l=2}^{\infty} t^{l}\left[P'_{l}(x) + P'_{l-2}(x) - 2xP'_{l-1}(x) - P_{l-1}(x)\right] = 0.
$$
 (22)

Then, using the completeness property of Taylor expansion, that is, equating the coefficients of powers of t in the expansion, show that, for t^0 and t^1 ,

$$
P_0'(x) = 0,\t\t(23a)
$$

$$
P_1'(x) = P_0(x) = 1,
$$
\n(23b)

and matching powers of t^l for $l \geq 2$ derive a recurrence relation for the derivative of Legendre polynomials as

$$
2x P'_{l-1} + P_{l-1} = P'_{l} + P'_{l-2}, \qquad l = 2, 3, \qquad (24)
$$

Here, we shall find it convenient to use the above recurrence relations in the form

$$
2x P'_{l} + P_{l} = P'_{l+1} + P'_{l-1}, \qquad l = 1, 2, 3, \dots,
$$
\n(25)

which is obtained by setting $l \rightarrow l + 1$.

(c) Equations [\(18\)](#page-2-0) and [\(25\)](#page-2-1) are linear set of equations for P'_{l-1} and P'_{l+1} in terms of P_l and P'_l . Solve them to find

$$
P'_{l+1} = xP'_{l} + (l+1)P_{l}, \qquad l = 0, 1, 2, \dots,
$$
 (26a)

$$
P'_{l-1} = x P'_{l} - l P_{l}.
$$
 (26b)

(d) Using $l \rightarrow l - 1$ in Eq. [\(26a\)](#page-3-0) show that

$$
P'_{l} = x P'_{l-1} + l P_{l-1}.
$$
\n(27)

Then, substitute Eq. $(26b)$ to obtain

$$
(1 - x2) P'_{l} = l P_{l-1} - x l P_{l}.
$$
\n(28)

Differentiate the above equation and substitute Eq. [\(26b\)](#page-3-1) again to derive the differential equation for Legendre polynomials as

$$
\left[\frac{\partial}{\partial x}(1-x^2)\frac{\partial}{\partial x} + l(l+1)\right]P_l(x) = 0.
$$
\n(29)

Substitute $x = \cos \theta$ to rewrite the differential equation in the form

$$
\left[\frac{1}{\sin\theta}\frac{\partial}{\partial\theta}\sin\theta\frac{\partial}{\partial\theta} + l(l+1)\right]P_l(\cos\theta) = 0.
$$
 (30)

3. (Rodrigues formula for Legendre polynomials.)

The generating function for the Legendre polynomials $P_l(x)$ of degree l is

$$
g(t,x) = \frac{1}{\sqrt{1+t^2 - 2xt}} = \sum_{l=0}^{\infty} t^l P_l(x).
$$
 (31)

(a) Using binomial expansion show that

$$
\frac{1}{\sqrt{1-y}} = \sum_{m=0}^{\infty} y^m \frac{(2m)!}{[m! \, 2^m]^2}
$$
\n(32)

and

$$
(2xt - t2)m = \sum_{n=0}^{\infty} \frac{m!}{n!(m-n)!} (2xt)^{m-n} t^{2n} (-1)^n.
$$
 (33)

Thus, show that

$$
\frac{1}{\sqrt{1+t^2-2xt}} = \sum_{m=0}^{\infty} \sum_{n=0}^{m} t^{m+n} \frac{(2m)!}{m!n!(m-n)!2^{m+n}} x^{m-n} (-1)^n.
$$
 (34)

Figure 1: Double summation.

(b) In Figure [1](#page-4-0) we illustrate how we change the double sum in m and n to variables l and s. This is achieved using the substitutions

$$
m + n = l,\t\t(35a)
$$

$$
m - n = 2s,\t\t(35b)
$$

which corresponds to

$$
2m = l + 2s
$$
, $m = \frac{l}{2} + s$, and $n = \frac{l}{2} - s$. (36)

The counting on the variable s , for given l , follows the pattern,

$$
l \text{ even}: \quad 2s = 0, 2, 4, \dots, l,\tag{37a}
$$

$$
l \text{ odd}: \quad 2s = 1, 3, 5, \dots, l. \tag{37b}
$$

Show that in terms of l and s the double summation can be expressed as

$$
\frac{1}{\sqrt{1+t^2-2xt}} = \sum_{l=0}^{\infty} \sum_{s} t^l \frac{(l+2s)!}{(\frac{l}{2}+s)!(\frac{l}{2}-s)!(2s)!2^l} x^{2s}(-1)^{\frac{l}{2}-s},\tag{38}
$$

where the limits on the sum in s are dictated by Eqs. (37) depending on l being even or odd. Thus, read out the polynomial expression for Legendre polynomials of degree l to be

$$
P_l(x) = \sum_{s} \frac{(l+2s)!}{\left(\frac{l}{2} + s\right)! \left(\frac{l}{2} - s\right)! (2s)! 2^{l}} x^{2s} (-1)^{\frac{l}{2} - s},\tag{39}
$$

where the summation on s depends on whether l is even or odd.

(c) Show that

$$
\left(\frac{d}{dx}\right)^{l} x^{l+2s} = \frac{(l+2s)!}{(2s)!} x^{2s}.
$$
\n(40)

Thus, show that

$$
P_l(x) = \frac{1}{l! \, 2^l} \left(\frac{d}{dx}\right)^l \sum_s \frac{l!}{\left(\frac{l}{2} + s\right)! \left(\frac{l}{2} - s\right)!} x^{l+2s} (-1)^{\frac{l}{2} - s}.\tag{41}
$$

(d) For even l the summation in s runs from $s = 0$ to $s = l/2$, Thus, writing $l + 2s =$ $2[l - (\frac{l}{2} - s)],$ show that

$$
P_l(x) = \frac{1}{l! \, 2^l} \left(\frac{d}{dx}\right)^l \sum_{s=0}^{\frac{l}{2}} \frac{l!}{\left(\frac{l}{2} + s\right)!\left(\frac{l}{2} - s\right)!} (x^2)^{l - \left(\frac{l}{2} - s\right)} (-1)^{\left(\frac{l}{2} - s\right)}.
$$
 (42)

Then, substituting

$$
\frac{l}{2} - s = n,\tag{43}
$$

show that

$$
P_l(x) = \frac{1}{l! \, 2^l} \left(\frac{d}{dx}\right)^l \sum_{n=0}^{\frac{l}{2}} \frac{l!}{(l-n)!n!} (x^2)^{l-n} (-1)^n. \tag{44}
$$

Note that the summation on n runs from $n = 0$ to $n = l/2$. If we were to extend this sum to $n = l$ verify that the additional terms will have powers in x less than l. Since the terms in the sum are acted upon by l derivatives with respect to x these additional terms will not contribute. Thus, show that

$$
P_l(x) = \left(\frac{d}{dx}\right)^l \frac{(x^2 - 1)^l}{l! \, 2^l}.\tag{45}
$$

Similarly, for odd l the summation is s runs as

$$
2s = 1, 3, 5, \dots, l,\tag{46}
$$

or

$$
\frac{2s-1}{2} = 0, 1, 2, \dots, \frac{l-1}{2}.
$$
\n(47)

Thus, substituting

$$
s' = \frac{2s - 1}{2} = s - \frac{1}{2},\tag{48}
$$

show that

$$
P_l(x) = \frac{1}{l! \, 2^l} \left(\frac{d}{dx}\right)^l \sum_{s=0}^{\frac{l-1}{2}} \frac{l!}{\left(\frac{l+1}{2} + s\right)!\left(\frac{l-1}{2} - s\right)!} x^{l+1+2s} (-1)^{\left(\frac{l-1}{2} - s\right)}.
$$
 (49)

Substituting

$$
\frac{l-1}{2} - s = n \tag{50}
$$

and writing

$$
\frac{l+1}{2} + s = l - \left(\frac{l-1}{2} - s\right)
$$
 (51)

show that

$$
P_l(x) = \frac{1}{l! \, 2^l} \left(\frac{d}{dx}\right)^l \sum_{n=0}^{\frac{l-1}{2}} \frac{l!}{(l-n)!n!} (x^2)^{l-n} (-1)^n. \tag{52}
$$

Again, like in the case of even l we can extend the sum on n beyond $n = (l-1)/2$, because they do not survive under the action of l derivatives with respect to x . Thus, again, we have

$$
P_l(x) = \left(\frac{d}{dx}\right)^l \frac{(x^2 - 1)^l}{l! \, 2^l},\tag{53}
$$

which is exactly the form obtained for even l. The expression in Eq. (53) is the Rodrigues formula for generating the Legendre polynomials of degree l.

4. (20 points.) Using Mathematica (or another graphing tool) plot the Legendre polynomials $P_l(x)$ for $l = 0, 1, 2, 3, 4$ on the same plot. Note that $-1 \le x \le 1$. Based on the pattern you see what can you conclude about the number of roots for $P_l(x)$. In Mathematica these plots are generated using the following commands:

Plot $[\text{LegendreP}[0,x]$, Legendre $P[1,x]$, Legendre $P[2,x]$, Legendre $P[3,x]$, LegendreP $[4,x]$ }, $\{x,-1,1\}$]

Compare your plots with those in Wikipedia article on 'Legendre Polynomials'. While there read the Wikipedia article on Adrien-Marie Legendre and the associated 'Portrait Debacle'.

5. (20 points.) Legendre polynomials are conveniently generated using the relation

$$
P_l(x) = \left(\frac{d}{dx}\right)^l \frac{(x^2 - 1)^l}{2^l l!},\tag{54}
$$

where $-1 \leq x \leq 1$. Evaluate Legendre polynomials of degree $l = 0, 1, 2, 3, 4$ in this manner.

6. (20 points.) Legendre polynomials $P_l(x)$ satisfy the relation

$$
\int_{-1}^{1} dx P_l(x) = 0 \quad \text{for} \quad l \ge 1. \tag{55}
$$

Verify this explicitly for $l = 0, 1, 2, 3, 4$.

7. (20 points.) Legendre polynomials satisfy the differential equation

$$
\left[\frac{1}{\sin\theta}\frac{\partial}{\partial\theta}\sin\theta\frac{\partial}{\partial\theta} + l(l+1)\right]P_l(\cos\theta) = 0.
$$
\n(56)

Verify this explicitly for $l = 0, 1, 2, 3, 4$.

8. (20 points.) Legendre polynomials satisfy the orthogonality relation

$$
\int_{-1}^{1} dx P_l(x) P_{l'}(x) = \frac{2}{2l+1} \delta_{ll'}.
$$
 (57)

Verify this explicitly for $l = 0, 1, 2$ and $l' = 0, 1, 2$. The orthogonality relation is also expressed as

$$
\int_0^\pi \sin\theta d\theta P_l(\cos\theta) P_{l'}(\cos\theta) = \frac{2}{2l+1} \delta_{ll'}.
$$
\n(58)

9. (20 points.) Express the function

$$
\sigma(\theta) = \cos^2 \theta \tag{59}
$$

in terms of Legendre polynomials. Solution:

$$
\sigma(\theta) = \frac{2}{3}P_2(\cos\theta) + \frac{1}{3}P_0(\cos\theta). \tag{60}
$$

10. (20 points.) Recollect Legendre polynomials of order l

$$
P_l(x) = \left(\frac{d}{dx}\right)^l \frac{(x^2 - 1)^l}{2^l l!}.
$$
\n
$$
(61)
$$

In particular

$$
P_0(x) = 1,\t\t(62a)
$$

$$
P_1(x) = x,\t\t(62b)
$$

$$
P_2(x) = \frac{3}{2}x^2 - \frac{1}{2}.
$$
\n(62c)

Consider a charged spherical shell of radius a consisting of a charge distribution in the polar angle alone,

$$
\rho(\mathbf{r}') = \sigma(\theta') \,\delta(r'-a). \tag{63}
$$

The electric potential on the z-axis, $\theta = 0$ and $\phi = 0$, is then given by

$$
\phi(r,0,0) = \frac{1}{4\pi\varepsilon_0} \int d^3r' \frac{\rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|}
$$

=
$$
\frac{2\pi a^2}{4\pi\varepsilon_0} \int_0^\pi \sin\theta' d\theta' \frac{\sigma(\theta')}{\sqrt{r^2 + a^2 - 2ar\cos\theta'}},
$$
(64)

after evaluating the r' and ϕ' integral.

(a) Consider a uniform charge distribution on the shell,

$$
\sigma(\theta) = \frac{Q}{4\pi a^2} P_0(\cos \theta). \tag{65}
$$

Evaluate the integral in Eq. [\(64\)](#page-7-0) to show that

$$
\phi(r,0,0) = \frac{Q}{4\pi\varepsilon_0} \frac{1}{r_+},\tag{66}
$$

where $r_<=\mathrm{Min}(a,r)$ and $r_>=\mathrm{Max}(a,r)$.

(b) Next, consider a (pure dipole, 2×1 -pole,) charge distribution of the form,

$$
\sigma(\theta) = \frac{Q}{4\pi a^2} P_1(\cos \theta). \tag{67}
$$

Evaluate the integral in Eq. [\(64\)](#page-7-0) to show that

$$
\phi(r, 0, 0) = \frac{Q}{4\pi\varepsilon_0} \frac{1}{3} \frac{1}{r_>} \left(\frac{r_<}{r_>} \right). \tag{68}
$$

(c) Next, consider a (pure quadrapole, 2×2 -pole,) charge distribution of the form,

$$
\sigma(\theta) = \frac{Q}{4\pi a^2} P_2(\cos \theta). \tag{69}
$$

Evaluate the integral in Eq. [\(64\)](#page-7-0) to show that

$$
\phi(r, 0, 0) = \frac{Q}{4\pi\varepsilon_0} \frac{1}{5} \frac{1}{r_{>} } \left(\frac{r_{<}}{r_{>} }\right)^2.
$$
\n(70)

(d) For a (pure 2l-pole) charge distribution

$$
\sigma(\theta) = \frac{Q}{4\pi a^2} P_l(\cos \theta)
$$
\n(71)

the integral in Eq. [\(64\)](#page-7-0) leads to

$$
\phi(r,0,0) = \frac{Q}{4\pi\varepsilon_0} \frac{1}{(2l+1)} \frac{1}{r_{>} } \left(\frac{r_{<}}{r_{>} }\right)^l.
$$
 (72)