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1. (20 points.) The Kepler problem is described by the Lagrangian

L(r, φ, ṙ, φ̇) =
1

2
µṙ2 +

1

2
µr2φ̇2 +

α

r
, (1)

where the first term is the contribution to the kinetic energy of the particle with reduced
mass µ due to radial velocity ṙ, the second term is the contribution to the kinetic energy
due to it’s tangential velocity φ̇, and the third term is the negative of the gravitational
potential energy between masses m1 and m2. Here α = GµM . (Show that µM = m1m2.)
Show that the canonical momentum in the radial direction and the associated force are

pr =
∂L

∂ṙ
= µṙ, (2a)

Fr =
∂L

∂r
= µrφ̇2

−
α

r2
, (2b)

respectively. Thus, derive the equation for the radial motion to be

d

dt
µṙ = µrφ̇2

−
α

r2
, (3)

where the second term on the right is the gravitational force of attraction and the first
term on the right is the centrifugal force due to the continuous change in the direction of
tangential velocity. Show that the canonical momentum in the tangential direction, the
angular momentum, and the associated canonical force, the torque, are

Lz =
∂L

∂φ̇
= µr2φ̇, (4a)

Fφ =
∂L

∂φ
= 0, (4b)

so that the angular momentum is a constant of motion,

d

dt
Lz = 0. (5)

(a) Using the conservation of angular momentum in Eq. (4a) to replace φ̇ in the equation
of motion in Eq. (3) derive

d

dt
µṙ =

L2
z

µr3
−

α

r2
, (6)
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such that we can write
d

dt
µṙ =

∂

∂r

(

−
L2
z

2µr2
+

α

r

)

. (7)

Multiplying by ṙ on both sides gives

ṙ
d

dt
µṙ =

dr

dt

∂

∂r

(

−
L2

z

2µr2
+

α

r

)

(8)

which can be written in the form

d

dt

(

1

2
µṙ2 +

L2

z

2µr2
−

α

r

)

= 0 (9)

and is interpreted as the statement of conservation of energy.

(b) Find the error in the following steps. Using the conservation of angular momentum
in Eq. (4a) to replace φ̇ in the Lagrangian in Eq. (1) derive

L(r, ṙ) =
1

2
µṙ2 +

L2
z

2µr2
+

α

r
(10)

and derive the equation of motion

d

dt
µṙ =

∂

∂r

(

L2

z

2µr2
+

α

r

)

. (11)

Thus, derive the statement of conservation of energy as

d

dt

(

1

2
µṙ2 −

L2

z

2µr2
−

α

r

)

= 0 (12)

with a wrong sign.

2. (20 points.) The effective potential energy for the Kepler problem is

Ueff(r) =
L2

z

2µr2
−

α

r
, (13)

where the first term is the energy associated with the centrifugal force and the second
term is the gravitational potential energy. Show that the equilibrium point for the above
potential energy function is

r0 =
L2

z

µα
(14)

and the corresponding minimum energy is

Ueff(r0) = −
α

2r0
. (15)
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For total energy E < 0 show that the potential energy function have two turning points,

rmin =
r0

1 + e
(16)

and
rmax =

r0
1− e

, (17)

where the eccentricity e is given by

e =

√

1−
E

Ueff(r0)
. (18)

Next, consider a perturbation to the effective potential energy,

U ′

eff(r) =
L2

z

2µr2
−

α

r
+

β3

r3
, (19)

such that

κ =
β3/r

3
0

α/r0
=

β3

αr20
≪ 1. (20)

To the leading order in κ, show that the shift in the equilibrium point is

r′
0
= r0(1 + 3κ) (21)

and the leading order shift in the minimum energy is

U ′

eff
(r′

0
) = Ueff(r0)

[

1− 2κ
]

. (22)

Show that the leading order shifts in the turning points are

r′
min

= rmin

[

1 + κ
(1 + e)2

e

]

(23)

and

r′
max

= rmax

[

1− κ
(1− e)2

e

]

. (24)

After the perturbation the trajectory is no more an ellipse. Nevertheless, for small per-
turbation we can define the leading order shift in the eccentricity using

e′ =
r′
max

− r′
min

r′max + r′
min

. (25)

Evaluate

e′ = e

[

1− κ
(1− e2)2

e2

]

. (26)

Illustrate the above shifts in the plot for effective potential energy.
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3. (20 points.) The path of a relativistic particle 1 moving along a straight line with
constant (proper) acceleration g is described by the equation of a hyperbola

z1(t) =
√

c2t2 + z2
0
, z0 =

c2

g
. (27)

This is the motion of a particle that comes to existance at z1 = +∞ at t = −∞, then
‘falls’ with constant (proper) acceleration g. If we choose xq(0) = 0 and yq(0) = 0, the
particle ‘falls’ keeping itself on the z-axis, comes to stop at z = z0, and then returns back
to infinity. Consider another relavistic particle 2 undergoing hyperbolic motion given by

z2(t) = −

√

c2t2 + z20 , z0 =
c2

g
. (28)

This is the motion of a particle that comes to existance at z2 = −∞ at t = −∞, then
‘falls’ with constant (proper) acceleration g. If we choose xq(0) = 0 and yq(0) = 0, the
particle ‘falls’ keeping itself on the z-axis, comes to stop at z = −z0, and then returns
back to negative infinity. The world-line of particle 1 is the blue curve in Figure 3, and
the world-line of particle 2 is the red curve in Figure 3. Using geometric (diagrammatic)
arguments might be easiest to answer the following. Imagine the particles are sources of
light (imagine a flash light pointing towards origin).

z
z0−z0

z

ct

z0−z0

z1(t)z2(t)

Figure 1: Problem 3

(a) At what time will the light from particle 1 first reach particle 2? Where are the
particles when this happens?

(b) At what time will the light from particle 2 first reach particle 1? Where are the
particles when this happens?

(c) Can the particles communicate with each other?
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(d) Can the particles ever detect the presence of the other? In other words, can one
particle be aware of the existence of the other? What can you deduce about the
observable part of our universe from this analysis?

4. (20 points.) The path of a relativistic particle moving along a straight line with constant
(proper) acceleration α is described by equation of a hyperbola

z2 − c2t2 = z20 , z0 =
c2

α
. (29)

z
z0

z

ct

z0

Figure 2: Problem 4

(a) This represents the world-line of a particle thrown from z > z0 at t < 0 towards
z = z0 in region of constant (proper) acceleration α as described by the bold (blue)
curve in the space-time diagram in Figure 4. In contrast a Newtonian particle moving
with constant acceleration α is described by equation of a parabola

z − z0 =
1

2
αt2 (30)

as described by the dashed (red) curve in the space-time diagram in Figure 4. Show
that the hyperbolic curve

z = z0

√

1 +
c2t2

z2
0

(31)

in regions that satisfy

t ≪
c

α
(32)

is approximately the parabolic curve

z = z0 +
1

2
αt2 + . . . . (33)
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(b) Recognize that the proper acceleration α does not have an upper bound.

(c) A large acceleration is achieved by taking an above turn while moving very fast.
Thus, turning around while moving close to the speed of light c should achieve the
highest acceleration. Show that α → ∞ corresponding to z0 → 0 represents this
scenario. What is the equation of motion of a particle moving with infinite proper
acceleration. To gain insight, plot world-lines of particles moving with α = c2/z0,
α = 10c2/z0, and α = 100c2/z0.

5. (20 points.) A relativisitic particle in a uniform electric field is described by the equations

dE

dt
= F · v, (34a)

dp

dt
= F, (34b)

where

E = mc2γ, (35a)

p = mvγ, (35b)

and
F = qE. (36)

Let us consider the configuration with the electric field in the ŷ direction,

E = E ŷ, (37)

and initial conditions

v(0) = 0 x̂+ 0 ŷ + 0 ẑ, (38a)

x(0) = 0 x̂+ y0 ŷ + 0 ẑ. (38b)

(a) In terms of the definition

ω0 =
1

c

qE

m
, (39)

show that the equations of motion are given by

dγ

dt
= ω0 · β (40)

and
d

dt
(βγ) = ω0. (41)

(b) Since the particle starts from rest show that we have

βγ = ω0t. (42)
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For our configuration this implies

βx = 0, (43a)

βyγ = ω0t, (43b)

βz = 0. (43c)

Further, deduce

βy =
ω0t

√

1 + ω2
0t

2
. (44)

Integrate again and use the initial condition to show that the motion is described by

y − y0 =
c

ω̄0

[

√

1 + ω̄2
0
t2 − 1

]

. (45)

Rewrite the solution in the form

(

y − y0 +
c

ω0

)2

− c2t2 =
c2

ω2
0

. (46)

This represents a hyperbola passing through y = y0 at t = 0. If we choose the initial
position y0 = c/ω0 we have

y2 − c2t2 = y2
0
. (47)

(c) The (constant) proper acceleration associated with this motion is

α = ω0c =
c2

y0
. (48)

A Newtonian particle moving with constant acceleration α is described by equation
of a parabola

y − y0 =
1

2
αt2. (49)

Show that the hyperbolic curve

y = y0

√

1 +
c2t2

y2
0

(50)

in regions that satisfy
ω0t ≪ 1 (51)

is approximately the parabolic curve

y = y0 +
1

2
αt2 + . . . . (52)
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