
Homework No. 06 (2025 Spring)

PHYS 510: CLASSICAL MECHANICS

School of Physics and Applied Physics, Southern Illinois University–Carbondale

Due date: Thursday, 2025 Feb 27, 4.30pm

1. (20 points.) A mass m slides down a frictionless ramp that is inclined at an angle θ with respect to the
horizontal. See Fig. 1. Assume uniform gravity g in the vertical downward direction.

(a) What is the equation of constraint.

(b) In terms of a suitable dynamical variable write a Lagrangian that describes the motion of the mass.

(c) Find the equations of motion from the Lagrangian.

θ

Figure 1: Problem 1.

2. (20 points.) The Atwood machine consists of two masses m1 and m2 connected by a massless (inex-
tensible) string passing over a massless pulley. See Figure 2. Massless pulley implies that tension in the
string on both sides of the pulley is the same, say T . Further, the string being inextensible implies that
the magnitude of the accelerations of both the masses are the same. Let m2 > m1.

(a) What is the constraint in the variables.

(b) In terms of a suitable dynamical variable write a Lagrangian that describes the motion of the mass.

(c) Find the equations of motion from the Lagrangian.
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Figure 2: Problem 2.
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Figure 3: Problem 3.

3. (20 points.) A pendulum consists of a mass m2 hanging from a pivot by a massless string of length
a. The pivot, in general, has mass m1, but, for simplification let m1 = 0. Let the pivot be constrained
to move on a horizontal rod. See Figure 3. For simplification, and at loss of generality, let us chose the
motion of the pendulum in a vertical plane containing the rod.

(a) Determine the Lagrangian for the system to be

L(x, ẋ, θ, θ̇) =
1

2
m2ẋ

2 +
1

2
m2a

2θ̇2 +m2aẋθ̇ cos θ +m2ga cos θ. (1)

(b) Evaluate the following derivatives and give physical interpretations of each of these.

∂L

∂ẋ
= m2ẋ+m2aθ̇ cos θ, (2a)

∂L

∂x
= 0, (2b)

∂L

∂θ̇
= m2a

2θ̇ +m2aẋ cos θ, (2c)

∂L

∂θ
= −m2aẋθ̇ sin θ −m2ga sin θ. (2d)

(c) Determine the equations of motion for the system. Express them in the form

ẍ+ aθ̈ cos θ − aθ̇2 sin θ = 0, (3a)

aθ̈ + ẍ cos θ + g sin θ = 0. (3b)

Observe that, like in the case of simple pendulum, the motion is independent of the mass m2 when
m1 = 0.

(d) In the small angle approximation show that the equations of motion reduce to

ẍ+ aθ̈ = 0, (4a)

aθ̈ + ẍ+ gθ = 0. (4b)

Determine the solution to be given by

θ = 0 and ẍ = 0. (5)

Interpret this solution.

(e) The solution θ = 0 seems to be too restrictive. Will this system not allow θ 6= 0? To investigate this,
let us not restrict to the small angle approximation. Rewrite Eqs. (3), using Eq. (3a) in Eq. (3b), as

ẍ+ aθ̈ cos θ − aθ̇2 sin θ = 0, (6a)

sin θ
[

aθ̈ sin θ + aθ̇2 cos θ + g
]

= 0. (6b)
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In this form we immediately observe that θ = 0 is a solution. However, it is not the only solution.
Towards interpretting Eqs. (6) let us identify the coordinates of the center of mass of the m1-m2

system,

(m1 +m2)xcm = m1x+m2(x+ a sin θ), (7a)

(m1 +m2)ycm = −m2a cos θ, (7b)

which for m1 = 0 are the coordinates of the mass m2,

xcm = x+ a sin θ, (8a)

ycm = −a cos θ. (8b)

Show that

ẋcm = ẋ+ aθ̇ cos θ, (9a)

ẏcm = aθ̇ sin θ, (9b)

and

ẍcm = ẍ+ aθ̈ cos θ − aθ̇2 sin θ, (10a)

ÿcm = aθ̈ sin θ + aθ̇2 cos θ. (10b)

Comparing Eqs. (6) and Eqs. (10) we learn that

ẍcm = 0, (11a)

sin θ
[

ÿcm + g
]

= 0. (11b)

Thus, ÿcm = −g is the more general solution, and θ = 0 is a trivial solution.

(f) Let us analyse the system for initial conditions: θ(0) = θ0, θ̇(0) = 0, ẋ(0) = 0. Show that for this
case ẋcm(0) = 0 and

a(cos θ − cos θ0) =
1

2
gt2. (12)

Plot θ as a function of time t. Interpret this solution.

(g) To do: The interpretation does not seem satisfactory. Is m1 = 0 physical here?

4. (20 points.) [Based on Landau and Lifshitz. Section 7.] A particle of mass m moving with velocity v1

leaves a half-space in which the potential energy is a constant U1 and enters another in which the potential
energy is a different constant U2 > U1.

(a) The potential energy can be described by

U(r) =

{

U1, z < a,

U2, a < z.
(13)

In terms of the Heavyside step function

θ(z) =

{

0, z < 0,

1, 0 < z,
(14)

show that the potential energy can be expressed in the form

U(r) = U1 + (U2 − U1)θ(z − a). (15)
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(b) Show that a suitable Lagrangian for the motion is

L(r,v) =
1

2
mv2 − U1 − (U2 − U1)θ(z − a). (16)

Derive the relations

∂L

∂v
= mv, (17a)

∂L

∂r
= −ẑ (U2 − U1) δ(z − a). (17b)

Recall that the derivative of Heaviside step function is a δ-function. Thus, derive the equation of
motion

d

dt
mv = −ẑ (U2 − U1) δ(z − a). (18)

(c) Show that the momentum in the plane perpendicular to ẑ is conserved. That is,

v1 sin θ1 = v2 sin θ2. (19)

Show that the energy is conserved. That is,

1

2
mv2

1
+ U1 =

1

2
mv2

2
+ U2. (20)

Thus, derive the measure of deflection at the interface to be given by

sin θ1
sin θ2

=

√

1−
2(U2 − U1)

mv2
1

. (21)

(d) Force is the manifestation of the system trying to attain minimum energy. Draw the velocity vector
v2 in Fig. 4 that satisfies these conditions. Does it deflect away from normal or towards the normal?

z
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Figure 4: Problem 4.
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