
Homework No. 11 (2025 Spring)

PHYS 510: CLASSICAL MECHANICS

School of Physics and Applied Physics, Southern Illinois University–Carbondale

Due date: Tuesday, 2025 Apr 15, 4.30pm

1. (20 points.) (Refer Schwinger’s QM, chapter 9) The Hamiltonian for a Kepler problem is

H =
p21
2m1

+
p22
2m2

− α

|r1 − r2|
, (1)

where r1 and r2 are the positions of the two constituent particles of masses m1 and m2.

(a) Introduce the coordinates representing the center of mass, relative position, total momentum, and
relative momentum:

R =
m1r1 +m2r2

m1 +m2

, r = r1 − r2, P = p1 + p2, p =
m2p1 −m1p2

m1 +m2

, (2)

respectively, to rewrite the Hamiltonian as

H =
P 2

2M
+

p2

2µ
− α

r
, (3)

where

M = m1 +m2,
1

µ
=

1

m1

+
1

m2

. (4)

(b) Show that Hamilton’s equations of motion are given by

dR

dt
=

P

M
,

dP

dt
= 0,

dr

dt
=

p

µ
,

dp

dt
= −αr

r3
. (5)

(c) Verify that the Hamiltonian H , the angular momentum L = r × p, and the Laplace-Runge-Lenz
vector

A =
r

r
− p× L

µα
, (6)

are the three constants of motion for the Kepler problem. That is, show that

dH

dt
= 0,

dL

dt
= 0,

dA

dt
= 0. (7)

2. (20 points.) In the Kepler problem the orbit of a planet is a conic section

r(φ) =
r0

1 + e cos(φ − φ0)
(8)

expressed in terms of the eccentricity e and distance r0. Determine the constant φ0 to be 0 by requiring
the initial condition

r(0) =
r0

1 + e
. (9)

This leads to
r(π) =

r0

1− e
. (10)
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The distance r0 is characterized by the fact that the effective potential

Ueff(r) =
L2
z

2µr2
− α

r
(11)

is minimum at r0. We used the definitions

r0 =
L2
z

µα
, Ueff(r0) = − α

2r0
, e =

√

1− E

Ueff(r0)
. (12)

Thus, the orbit of a planet is completely determined by the energy E and the angular momentum Lz,
which are constants of motion. The statement of conservation of angular momentum can be expressed in
the form

dt =
µ

Lz

r2dφ, (13)

which is convenient for evaluating the time elapsed in the motion. For the case of elliptic orbit, Ueff(r0) <
E < 0, show that the time period is given by

T =
µ

Lz

∫ 2π

0

dφ
r20

(1 + e cosφ)2
=

µr20
Lz

2π

(1− e2)
3

2

. (14)

Show that at point ‘2’ in Figure 2

b

φ
r0

1

2
3

4

Figure 1: Elliptic orbit

φ =
π

2
, and r = r0. (15)

The time taken to go from ‘1’ to ‘2’ is given by (need not be proved here)

t1→2 =
µ

Lz

∫ π

2

0

dφ
r20

(1 + e cosφ)2
=

T

4

(

4

π
tan−1

√

1− e

1 + e
− 2e

π

√

1− e2

)

. (16)

Evaluate t1→2 for e = 0 and e = 1. Show that at point ‘3’ in Figure 2

φ = π − tan−1

(√
1− e2

e

)

, and r = a. (17)

The time taken to go from ‘1’ to ‘3’ is given by (need not be proved here)

t1→3 =
µ

Lz

∫

π−tan
−1

(√
1−e

2

e

)

0

dφ
r20

(1 + e cosφ)2
=

T

4

(

1− 2e

π

)

. (18)
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Similarly, the time taken to go from ‘3’ to ‘4’ is given by (need not be proved here)

t3→4 =
µ

Lz

∫

π

π−tan−1

(√
1−e

2

e

) dφ
r20

(1 + e cosφ)2
=

T

4

(

1 +
2e

π

)

. (19)

Evaluate the time elapsed in the above cases for e → 0 and e → 1. The eccentricity e of Earth’s orbit is
0.0167 and timeperiod T is 365 days. Thus, calculate

t1→3 − t1→2 (20)

for Earth in units of days.
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