
Homework No. 14 (2025 Spring)

PHYS 510: CLASSICAL MECHANICS

School of Physics and Applied Physics, Southern Illinois University–Carbondale

Due date: Not applicable

1. (20 points.) Relativisitic kinematics is constructed in terms of the proper time element ds, which remains
unchanged under a Lorentz transformation,

−ds2 = −c2dt2 + dx · dx. (1)

Here x and t are the position and time of a particle. They are components of a vector under Lorentz
transformation and together constitute the position four-vector

xα = (ct,x). (2)

(a) Velocity: The four-vector associated with velocity is constructed as

uα = c
dxα

ds
. (3)

i. Using Eq. (1) deduce

γds = cdt, where γ =
1

√

1− β2
, β =

v

c
, v =

dx

dt
. (4)

Then, show that
uα = (cγ,vγ). (5)

Here v is the velocity that we use in Newtonian physics.

ii. Further, show that
uαuα = −c2. (6)

Thus, conclude that the velocity four-vector is a time-like vector. What is the physical implication
of this statement for a particle?

iii. Write down the form of the velocity four-vector in the rest frame of the particle?

(b) Momentum: Define momentum four-vector in terms of the mass m of the particle as

pα = muα = (mcγ,mvγ). (7)

Connection with the physical quantities associated to a moving particle, the energy and momentum
of the particle, is made by identifying (or defining)

pα =

(

E

c
,p

)

, (8)

which corresponds to the definitions

E = mc2γ, (9a)

p = mvγ, (9b)

for energy and momentum, respectively. Discuss the non-relativistic limits of these quantities. In
particular, using the approximation

γ = 1 +
1

2

v2

c2
+ . . . , (10)
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show that

E −mc2 =
1

2
mv2 + . . . , (11a)

p = mv + . . . . (11b)

Evaluate
pαpα = −m2c2. (12)

Thus, derive the energy-momentum relation

E2 − p2c2 = m2c4. (13)

(c) Acceleration: The four-vector associated with acceleration is constructed as

aα = c
duα

ds
. (14)

i. Show that

aα = γ

(

c
dγ

dt
,v

dγ

dt
+ γa

)

, (15)

where

a =
dv

dt
(16)

is the acceleration that we use in Newtonian physics.

ii. Starting from Eq. (6) and taking derivative with respect to proper time show that

uαaα = 0. (17)

Thus, conclude that four-acceleration is space-like.

iii. Further, using the explicit form of uαaα in Eq. (17) derive the identity

dγ

dt
=

(v · a

c2

)

γ3. (18)

iv. Show that
aα =

(v · a

c
γ4, aγ2 +

v

c

v · a

c
γ4

)

(19)

v. Write down the form of the acceleration four-vector in the rest frame (v = 0) of the particle as
(0, a0), where

a0 = a
∣

∣

rest frame
(20)

is defined as the proper acceleration. Note that the proper acceleration is a Lorentz invariant
quantity, that is, independent of which observer makes the measurement.

vi. Evaluate the following identities involving the proper acceleration

aαaα = a0 · a0 =

[

a · a+
(v · a

c

)2

γ2

]

γ4 =

[

a · a−

(

v × a

c

)2
]

γ6. (21)

vii. In a particular frame, if v || a (corresponding to linear motion), deduce

|a0| = |a|γ3. (22)

And, in a particular frame, if v ⊥ a (corresponding to circular motion), deduce

|a0| = |a|γ2. (23)
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(d) Force: The force four-vector is defined as

fα = c
dpα

ds
=

(

γ

c

dE

dt
,Fγ

)

, (24)

where the force F, identified (or defined) as

F =
dp

dt
, (25)

is the force in Newtonian physics. Starting from Eq. (12) derive the relation

dE

dt
= F · v (26)

which is the power output or the rate of work done by the force F on the particle.

(e) Equations of motion: The relativistic generalization of Newton’s laws are

fα = maα. (27)

Show that these involve the relations, using the definitions of energy and momentum in Eqs. (9),

F =
dp

dt
= maγ +mv

v · a

c2
γ3, (28a)

dE

dt
= F · v = mv · aγ3. (28b)

Discuss the non-relativistic limits of the equations of motion.

2. (20 points.) The path of a relativistic particle moving along a straight line with constant (proper)
acceleration α is described by equation of a hyperbola

z2 − c2t2 = z20 , z0 =
c2

α
. (29)

z
z0

z

ct

z0

Figure 1: Problem 2
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(a) This represents the world-line of a particle thrown from z > z0 at t < 0 towards z = z0 in region
of constant (proper) acceleration α as described by the bold (blue) curve in the space-time diagram
in Figure 2. In contrast a Newtonian particle moving with constant acceleration α is described by
equation of a parabola

z − z0 =
1

2
αt2 (30)

as described by the dashed (red) curve in the space-time diagram in Figure 2. Show that the
hyperbolic curve

z = z0

√

1 +
c2t2

z2
0

(31)

in regions that satisfy

t ≪
c

α
(32)

is approximately the parabolic curve

z = z0 +
1

2
αt2 + . . . . (33)

(b) Recognize that the proper acceleration α does not have an upper bound.

(c) A large acceleration is achieved by taking an above turn while moving very fast. Thus, turning
around while moving close to the speed of light c should achieve the highest acceleration. Show that
α → ∞ corresponding to z0 → 0 represents this scenario. What is the equation of motion of a particle
moving with infinite proper acceleration. To gain insight, plot world-lines of particles moving with
α = c2/z0, α = 10c2/z0, and α = 100c2/z0.

3. (20 points.) A relativisitic particle in a uniform magnetic field is described by the equations

dE

dt
= F · v, (34a)

dp

dt
= F, (34b)

where

E = mc2γ, (35a)

p = mvγ, (35b)

and
F = qv ×B. (36)

Show that
dγ

dt
= 0. (37)

Then, derive
dv

dt
= v × ωc, (38)

where

ωc =
qB

mγ
. (39)

Compare this relativistic motion to the associated non-relativistic motion.
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4. (20 points.) A relativisitic particle in a uniform electric field is described by the equations

dE

dt
= F · v, (40a)

dp

dt
= F, (40b)

where

E = mc2γ, (41a)

p = mvγ, (41b)

and
F = qE. (42)

Let us consider the configuration with the electric field in the ŷ direction,

E = E ŷ, (43)

and initial conditions

v(0) = 0 x̂+ 0 ŷ + 0 ẑ, (44a)

x(0) = 0 x̂+ y0 ŷ + 0 ẑ. (44b)

(a) In terms of the definition

ω0 =
1

c

qE

m
, (45)

show that the equations of motion are given by

dγ

dt
= ω0 · β (46)

and
d

dt
(βγ) = ω0. (47)

(b) Since the particle starts from rest show that we have

βγ = ω0t. (48)

For our configuration this implies

βx = 0, (49a)

βyγ = ω0t, (49b)

βz = 0. (49c)

Further, deduce

βy =
ω0t

√

1 + ω2
0
t2
. (50)

Integrate again and use the initial condition to show that the motion is described by

y − y0 =
c

ω̄0

[

√

1 + ω̄2
0
t2 − 1

]

. (51)

Rewrite the solution in the form
(

y − y0 +
c

ω0

)2

− c2t2 =
c2

ω2
0

. (52)

This represents a hyperbola passing through y = y0 at t = 0. If we choose the initial position
y0 = c/ω0 we have

y2 − c2t2 = y20 . (53)
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(c) The (constant) proper acceleration associated with this motion is

α = ω0c =
c2

y0
. (54)

A Newtonian particle moving with constant acceleration α is described by equation of a parabola

y − y0 =
1

2
αt2. (55)

Show that the hyperbolic curve

y = y0

√

1 +
c2t2

y2
0

(56)

in regions that satisfy
ω0t ≪ 1 (57)

is approximately the parabolic curve

y = y0 +
1

2
αt2 + . . . . (58)
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