Homework No. 14 (2025 Spring)

PHYS 510: CLASSICAL MECHANICS

School of Physics and Applied Physics, Southern Illinois University—Carbondale
Due date: Not applicable

1. (20 points.) Relativisitic kinematics is constructed in terms of the proper time element ds, which remains
unchanged under a Lorentz transformation,

—ds® = —c*dt* 4 dx - dx. (1)

Here x and ¢ are the position and time of a particle. They are components of a vector under Lorentz
transformation and together constitute the position four-vector

x* = (ct, x). (2)
(a) Velocity: The four-vector associated with velocity is constructed as

dx®
@ = CcC—. 3
u e (3)
i. Using Eq. (1) deduce
1 d
~vds = cdt, where 7:\/17_—[32, ,8:%, V:d_j' 4)
Then, show that

u® = (7, vy). ()

Here v is the velocity that we use in Newtonian physics.

ii. Further, show that
Uuy = —c2. (6)

Thus, conclude that the velocity four-vector is a time-like vector. What is the physical implication
of this statement for a particle?

iii. Write down the form of the velocity four-vector in the rest frame of the particle?
(b) Momentum: Define momentum four-vector in terms of the mass m of the particle as

(a3

P = mu® = (mey, mvy). (7)

Connection with the physical quantities associated to a moving particle, the energy and momentum
of the particle, is made by identifying (or defining)

= (). )

E = mc?y, (9a)
p = mvy, (91)

which corresponds to the definitions

for energy and momentum, respectively. Discuss the non-relativistic limits of these quantities. In

particular, using the approximation
102
”y:l+§c—2+..., (10)



show that

Evaluate

1
E —mc* = §m1)2+..., (11a)
p=mv+.... (11b)
Ppa = —m2c2. (12)

Thus, derive the energy-momentum relation

E? —p?c® = m?ct (13)

(c) Acceleration: The four-vector associated with acceleration is constructed as

ii.

iii.

iv.

vi.

vii.

du®
*=c— 14
a e (14)
Show that p p
g Y
o _ 27 vt 15
(Cdt’vdt+7a)’ (15)
where p
v
= — 16
o (16)
is the acceleration that we use in Newtonian physics.
Starting from Eq. (6) and taking derivative with respect to proper time show that
u®aq = 0. (17)
Thus, conclude that four-acceleration is space-like.
Further, using the explicit form of u®a,, in Eq. (17) derive the identity
dy v-ay ;5
(= . 18
dt ( c2 ) v (18)
Show that v-.a vv-a
a® = (—747a72 + ——74) (19)
c c c

. Write down the form of the acceleration four-vector in the rest frame (v = 0) of the particle as

(0,ap), where

apg = (20)

a|rest frame

is defined as the proper acceleration. Note that the proper acceleration is a Lorentz invariant
quantity, that is, independent of which observer makes the measurement.

Evaluate the following identities involving the proper acceleration

4%ag = ag - ag = [a-a—i— (%)272] A= [a-a— (V a a>2] 5. (21)

¢
In a particular frame, if v || a (corresponding to linear motion), deduce
o] = |aly”. (22)
And, in a particular frame, if v L a (corresponding to circular motion), deduce

o] = |aly®. (23)



(d) Force: The force four-vector is defined as

«_ dp*  (~vdE
f _cdS _(C dtuF/y)u (24)

where the force F, identified (or defined) as

dp
F=— 25
L3 (25)
is the force in Newtonian physics. Starting from Eq. (12) derive the relation
dE
—Z _F. 26
o v (26)
which is the power output or the rate of work done by the force F on the particle.
(e) Equations of motion: The relativistic generalization of Newton’s laws are
£ =ma®. (27)
Show that these involve the relations, using the definitions of energy and momentum in Egs. (9),
F= Py v (28a)
= — =m mv
dt Y 2 Y
dE
%:]@v:mv-a’yg. (28b)

Discuss the non-relativistic limits of the equations of motion.

2. (20 points.) The path of a relativistic particle moving along a straight line with constant (proper)
acceleration « is described by equation of a hyperbola

2
22—t =22, z0 = —. (29)
o

Figure 1: Problem 2



(a)

This represents the world-line of a particle thrown from z > 2y at t < 0 towards z = 2y in region
of constant (proper) acceleration a as described by the bold (blue) curve in the space-time diagram
in Figure 2. In contrast a Newtonian particle moving with constant acceleration « is described by
equation of a parabola

1
z—z9= iatQ (30)

as described by the dashed (red) curve in the space-time diagram in Figure 2. Show that the
hyperbolic curve

2¢2
2= 2041+ — (31)
20
in regions that satisfy
c
< — 32
<= (32)
is approximately the parabolic curve
L o
z=zo+ —at*+.... (33)

2

Recognize that the proper acceleration o does not have an upper bound.

A large acceleration is achieved by taking an above turn while moving very fast. Thus, turning
around while moving close to the speed of light ¢ should achieve the highest acceleration. Show that
a — oo corresponding to zg — 0 represents this scenario. What is the equation of motion of a particle
moving with infinite proper acceleration. To gain insight, plot world-lines of particles moving with
a = c*/zy, a = 10c¢%/ 2, and a = 100¢?/ 2.

3. (20 points.) A relativisitic particle in a uniform magnetic field is described by the equations

dE

e F-v, (34a)
dp
L - F 34b
P_w (34D)
where
E = mc*y, (35a)
p = mvy, (35Db)
and
F =¢v x B. (36)
Show that J
Y
— =0. 37
p” (37)
Then, derive
d
d—‘t’ =V X w,, (38)
where B
we =12 (39)
my

Compare this relativistic motion to the associated non-relativistic motion.



4. (20 points.) A relativisitic particle in a uniform electric field is described by the equations

dE

— _F.

dt v

dp

I

dt ’
where

E = mc*y,

p = mvy,
and

F =¢qE.
Let us consider the configuration with the electric field in the y direction,
E=Fy,
and initial conditions
v(0) =0x+0y+ 0z,
x(0) = 0x+yoy+02
(a) In terms of the definition
1qE
wo=——",
cm

show that the equations of motion are given by

dy
— = Wwn
7 0B
and
®(37)
— = wy.
dt Y o
Since the particle starts from rest show that we have
By = wot.
For our configuration this implies
ﬁz = O,
ﬂy”Y = th,
ﬁz = 0.
Further, deduce
WQt

B = =2t
Y V 1+ wit?

Integrate again and use the initial condition to show that the motion is described by

y—yoz_i [\/1+w§t2—1].
Wo

c\? 2
<y—yo+—> — A2 = .
wo

Rewrite the solution in the form

Q

&
St

(40a)

(40b)

(41a)
(41Db)

(48)

(49a)
(49Db)
(49¢)

(50)

(51)

(52)

This represents a hyperbola passing through y = yo at ¢t = 0. If we choose the initial position

Yo = ¢/wp we have
242 2

y* =t =y,

(53)



(¢) The (constant) proper acceleration associated with this motion is

CQ

o= wpe = —. 54
Yo (54)
A Newtonian particle moving with constant acceleration « is described by equation of a parabola

1

Y — Yo = §ozt2. (55)
Show that the hyperbolic curve
22
y=yoy|/1+— (56)
Yo
in regions that satisfy
wot K 1 (57)
is approximately the parabolic curve
L o
y:yo+§o¢t +.... (58)



