Midterm Exam No. 02 (Fall 2025)

PHYS 203B-001: COLLEGE PHYSICS

School of Physics and Applied Physics, Southern Illinois University-Carbondale
Date: 2025 Oct 23

(Name)	(Signature)

Instructions

- 1. Seating direction: In alternate rows, B, D, F, ..., on even-numbered seats.
- 2. Total time = 75 minutes.
- 3. There are 4 short questions and 3 homework-style problems in this exam.
- 4. Equation sheet is provided separately.
- 5. For partial credit you need to present your work in detail and organize it clearly.
- 6. A simple calculator (with trigonometric functions) is allowed.
- 7. Use of smart devices, including smart watches, is strictly prohibited. They should stay out of reach during the exam.
- 8. Academic misconduct will lead to a failing grade in the course.

1. (5 points.) The electric potentials at the two ends of a $R=1.5\,\mathrm{k}\Omega$ resistor in a circuit is measured to be $V_a=6.0\,\mathrm{V}$ and $V_b=1.5\,\mathrm{V}$. Refer Figure 1. Determine the current passing through the resistor.

Figure 1: Problem 1

2. (5 points.) Watt is the unit of power. Watt-hour is a unit of energy. How much is kWh (kilo Watt-hour) in Joules? The average cost of electricity in the United States, for residential users, is about 0.15 USD/kWh (15 cents per kilo Watt-hour). At this rate your electricity bill for a month came out to be 50.00 USD. How much electric energy (in Joules) did you use in the month?

3. (5 points.) A charged particle initially moving with constant speed v enters a region of magnetic field **B** pointing into the page. It is deflected as shown in Fig. 2. What can you deduce about the sign of the charged particle? That is, is it a positive charge or a negative charge.

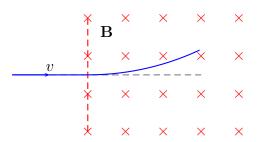


Figure 2: Problem 3

4. (5 points.) A bar magnet is hung from a ceiling such that it is free to rotate in the horizontal plane. What can you infer from the orientation of such a magnet after it settles down?

5. (10 points.) Determine the equivalent capacitance between points A and B in the circuit in Figure 3. Given $C_1 = 1.0 \,\mathrm{nF}$, $C_2 = 2.0 \,\mathrm{nF}$, $C_3 = 3.0 \,\mathrm{nF}$, $C_4 = 4.0 \,\mathrm{nF}$, and $C_5 = 5.0 \,\mathrm{nF}$.

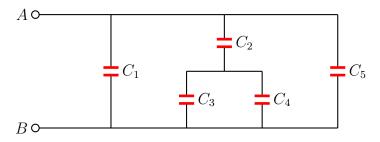


Figure 3: Problem 5

6. (10 points.) Figure 4 shows two resistors connected in series to a battery. The battery has a voltage of V=10. V, and the resistors have resistances $R_1=15$. Ω and $R_2=45$. Ω . Find the ratio P_2/P_1 of the powers of the resistors.

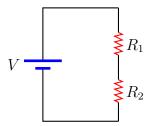


Figure 4: Problem 6

7. (10 points.) A loop in the shape of a right triangle of sides $a=3.0\,\mathrm{cm}$ and $b=2.0\,\mathrm{cm}$, carrying a current $I=2.0\,\mathrm{A}$, is placed in a uniform magnetic field of strength 0.30 T going into the page. See Figure 5. Determine the magnitude and direction of the force on side 1 of the triangle.

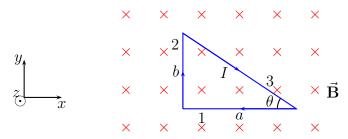


Figure 5: Problem 7.