Midterm Exam No. 03 (Fall 2025) PHYS 205A-002: UNIVERSITY PHYSICS

School of Physics and Applied Physics, Southern Illinois University-Carbondale
Date: 2025 Nov 3

(Name)	(Signature)

Instructions

- 1. Seating direction: In alternate rows, B, D, F, ..., on even-numbered seats.
- 2. Total time = 50 minutes.
- 3. There are 4 conceptual questions and 3 problems in this exam.
- 4. Equation sheet is provided separately.
- 5. For partial credit you need to present your work in detail and organize it clearly.
- 6. A simple calculator (with trigonometric functions) is allowed.
- 7. Use of smart devices, including smart watches, is strictly prohibited. They should stay out of reach during the exam.
- 8. Academic misconduct will lead to a failing grade in the course.

1.	` - /	_		is the work done circle around the

2. (5 points.) Using the potential energy curve shown in Figure 1 determine the direction of the force at $x = 3.0 \,\mathrm{m}$.

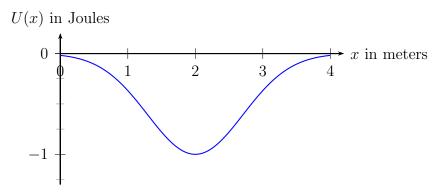


Figure 1: Problem 2.

3. (5 points.) What is the ratio of the initial kinetic energy to final kinetic energy in a perfectly inelastic collision involving two particles of equal masses when one of the mass is initially at rest?

4. (5 points.) A mass of 100.g moving with a speed 10.m/s (elastically) collides with another identical mass that is at rest. Determine the magnitude and direction of the velocities of the masses after collision.

5. (10 points.) A 25 kg mass is projected up a frictionless surface, see Figure 2, from point B. It comes to rest at point A. Determine the height of point A, given the mass is projected with a velocity $14 \,\mathrm{m/s}$ at point B.

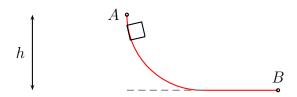


Figure 2: Problem 5.

6. (10 points.) The potential energy of a particle moving along the x axis is given by

$$U(x) = ax^2 + bx^4, a = 8.0 \frac{J}{m^2}, b = -1.0 \frac{J}{m^4}.$$
 (1)

- (a) Determine the points on the x axis where the force on the particle is zero.
- (b) What can you conclude about the stability of the particle at the points where the force is zero? That is, is it a stable point or an unstable point?

7. (10 points.) A bullet of mass $30.00\,\mathrm{g}$ is fired into a wooden block of mass $3.000\,\mathrm{kg}$ that hangs like a pendulum. The bullet is embedded in the block (complete inelastic collision). The block (with the bullet embedded in it) goes $h=30.0\,\mathrm{cm}$ high after collision. Calculate the speed of the bullet before it hit the block.