Midterm Exam No. 02 (Fall 2025)

PHYS 205B: UNIVERSITY PHYSICS

School of Physics and Applied Physics, Southern Illinois University-Carbondale
Date: 2025 Oct 9

(Name)	(Signature)

Instructions

- 1. Seating direction: In alternate rows, B, D, F, ..., on even-numbered seats.
- 2. Total time = 75 minutes.
- 3. There are 4 short questions and 3 homework-style problems in this exam.
- 4. Equation sheet is provided separately.
- 5. For partial credit you need to present your work in detail and organize it clearly.
- 6. A simple calculator (with trigonometric functions) is allowed.
- 7. Use of smart devices, including smart watches, is strictly prohibited. They should stay out of reach during the exam.
- 8. Academic misconduct will lead to a failing grade in the course.

1. (5 points.) Two resistors $R_1 = 10.\Omega$ and $R_2 = 20.\Omega$ are connected in series. The electric potentials at the free ends of this combination is measured to be $V_a = 4.5\,\mathrm{V}$ and $V_b = -1.5\,\mathrm{V}$. Refer Figure 1. Determine the current passing through each of the the resistors.

Figure 1: Problem 1

2. (5 points.) What is dimension of the ratio of capacitance of a capacitor and the permittivity of vacuum,

$$\frac{C}{\varepsilon_0}$$
. (1)

3. (5 points.) Charging the capacitor C in Figure 2, for the initial condition Q(0) = 0, is described by

$$Q(t) = CV \left[1 - e^{-\frac{t}{RC}} \right]. \tag{2}$$

At time t = RC determine the amount of charge on the capacitor as a fraction of the maximum value of charge.

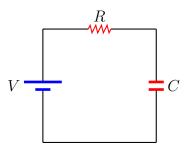


Figure 2: Problem 3

4. (5 points.) A proton at a moment in time has a velocity $2.0 \times 10^6 \,\mathrm{m/s}$ in the same direction as the magnetic field of strength $0.30\,\mathrm{T}$. What is the magnitude and direction of the magnetic force on the proton at this moment?

5. (10 points.) A potential difference V=10. V is applied across a capacitor arrangement with two capacitors connected in parallel, $C_1=10$. $\mu \rm F$ and $C_2=20$. $\mu \rm F$. See Figure 3. Find the ratio U_1/U_2 of the potential energies stored inside the capacitors.

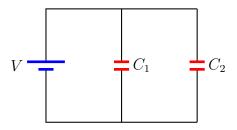


Figure 3: Problem 5

6. (10 points.) Determine the current in resistance R_1 in the circuit shown in Figure 4. Given $V = 5.0 \,\mathrm{V}$ and $R_1 = R = 5.0 \,\Omega$.

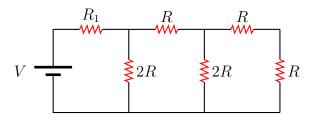


Figure 4: Problem 6

7. (10 points.) Consider the circuit in Figure 5. Determine the currents in each of the resistors. Given $R_1 = 10. \Omega$, $R_2 = 20. \Omega$, $V_1 = 10. V$, and $V_2 = 20. V$.

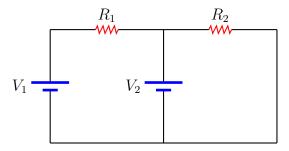


Figure 5: Problem 7