Midterm Exam No. 01 (Fall 2025)

PHYS 500A: MATHEMATICAL METHODS

School of Physics and Applied Physics, Southern Illinois University-Carbondale
Date: 2025 Sep 26

1. (20 points.) Let the rectangular components of position vector \mathbf{r} be represented by r_i and the rectangular components of momentum vector \mathbf{p} be represented by p_i . In Newtonian mechanics these components satisfy the commutation relations

$$[r_i, p_i] = 0. (1)$$

Then, show that

$$(\mathbf{r} \times \mathbf{p}) \cdot \mathbf{r} = 0. \tag{2}$$

In quantum mechanics governed by Heisenberg equations of motion the components of position and momentum vectors satisfy the commutation relations

$$[r_i, p_j] = i\hbar \,\delta_{ij},\tag{3}$$

 $\hbar = h/(2\pi)$, where h is the Planck constant. Will the vector identity in Eq. (2) be satisfied in quantum mechanics? If not, determine the modified relation.

2. (20 points.) Evaluate

$$\nabla^2 \left(\frac{1}{\mathbf{a} \cdot \mathbf{r}} \right), \tag{4}$$

where **a** is a constant vector.

3. (20 points.) The eigenbasis for rectangular coordinates on a two-dimensional plane satisfy the completeness relation

$$\mathbf{1} = \hat{\mathbf{i}}\,\hat{\mathbf{i}} + \hat{\mathbf{j}}\,\hat{\mathbf{j}} \tag{5}$$

and the eigenbasis for polar coordinates on a plane satisfy the completeness relation

$$\mathbf{1} = \hat{\mathbf{r}} \, \hat{\mathbf{r}} + \hat{\boldsymbol{\phi}} \, \hat{\boldsymbol{\phi}},\tag{6}$$

where $\hat{\mathbf{r}}$ and $\hat{\boldsymbol{\phi}}$ are radial and tangential unit vectors, respectively. A transformation operator that connects the above two eigenbases has the dyadic construction

$$\mathbf{T} = \hat{\mathbf{r}}\,\hat{\mathbf{i}} + \hat{\boldsymbol{\phi}}\,\hat{\mathbf{j}}.\tag{7}$$

Evaluate the following:

$$\mathbf{T} \cdot \hat{\mathbf{i}} = \tag{8a}$$

$$\mathbf{T} \cdot \hat{\mathbf{j}} = \tag{8b}$$

4. (20 points. Take home.) Let

$$f(z) = \frac{(z-2)(z+2)}{z(z-2i)(z+2i)}. (9)$$

- (a) Find the zeros of f(z).
- (b) Find the poles of f(z).

Remember to include 'the point at infinity' in your analysis.

5. (20 points.) Evaluate the contour integral

$$I(a) = \frac{1}{2\pi i} \oint_c dz \frac{ae^{az}}{az - 1},\tag{10}$$

where the contour c is a unit circle going counterclockwise with center at the origin. Presume a is complex number outside the contour, that is, |a| > 1.