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Chapter 1

Mathematical preliminaries

1.1 Vector calculus

1.1.1 (Algebraic) index notation

1. (10 points.) Verify the following relations:

δij = δji, (1.1a)

δii = 3, (1.1b)

δikδkj = δij , (1.1c)

δimBm = Bi, (1.1d)

εijk = −εikj = εkij , (1.1e)

εiik = 0, (1.1f)

δijεijk = 0. (1.1g)

2. (10 points.) In three dimensions the Levi-Civita symbol is given in terms of the determinant of the
Kronecker δ-functions,

εijkεlmn =

∣

∣

∣

∣

∣

∣

δil δim δin
δjl δjm δjn
δkl δkm δkn

∣

∣

∣

∣

∣

∣

= δil(δjmδkn − δjnδkm)

+δim(δjnδkl − δjlδkn)

+δin(δjlδkm − δjmδkl). (1.2a)

Using the above identity show that

εijkεimn = δjmδkn − δjnδkm, (1.3a)

εijkεijn = 2δkn, (1.3b)

εijkεijk = 6. (1.3c)

3. (10 points.) Using the property of Kronecker δ-function and Levi-Civita symbol evaluate the following
using index notation.

δijδji = (1.4a)

δijεijk = (1.4b)

εijmδmnεnij = (1.4c)
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6 CHAPTER 1. MATHEMATICAL PRELIMINARIES

4. (20 points.) Using index notation and the properties of Kronecker δ-function and Levi-Civita symbol
expand the left hand side of the vector equation below to express it in the form on the right hand side,

(A×B) · (C×D) = α(A ·C)(B ·D) + β(A ·D)(B ·C). (1.5)

In particular find the numbers α and β.

5. (20 points.) Given

A =
1

2
B× r (1.6)

where B is a constant (homogeneous in space) vector field. Using index notation and the properties of
Kronecker δ-function and Levi-Civita symbol in three dimensions expand the left hand side of the vector
equation below to express it in the form on the right hand side,

∇×A = αB+ βr. (1.7)

In particular find the numbers α and β.

6. (10 points.) Derive the following vector identities (using index notation)

A× (B×C) = B(A ·C)−C(A ·B), (1.8)

(A×B) · (C×D) = (A ·C)(B ·D)− (A ·D)(B ·C), (1.9)

7. (20 points.) For a vector field A, evaluate the vector identity

∇ · (∇ ×A). (1.10)

Then, after the introduction of a scalar field ψ, evaluate

∇ [ψ · (∇×A)] . (1.11)

[2023F-MT01]

8. (10 points.) Use index notation or dyadic notation to show that

∇× (∇×A) = ∇(∇ ·A)−∇2A, (1.12a)

∇ · (A×B) = (∇×A) ·B−A · (∇×B), (1.12b)

∇× (A×B) = (B ·∇)A+A(∇ ·B)− (∇ ·A)B− (A ·∇)B. (1.12c)

9. (10 points.) (Ref. Schwinger et al., problem 1, chapter 1.) Verify the following identities explicitly:

(a) ∇× (∇×A) = ∇(∇ ·A)−∇2A,

(b) ∇ · (A×B) = (∇×A) ·B−A · (∇×B),

(c) A× (B×C) +B× (C×A) +C× (A×B) = 0,

(d) ∇× (A×B) = A× (∇×B)−B× (∇ ×A)− (A×∇)×B+ (B×∇)×A.

1.1.2 (Geometric) dyadic notation

1. (20 points.) Verify the following identities:

∇r =
r

r
= r̂, (1.13a)

∇ r = 1. (1.13b)

http://sphics.com/tc/202308-SIU-P500A/files/2022F-P500A-MMMT01.pdf


1.1. VECTOR CALCULUS 7

Further, show that

∇ · r = 3, (1.14a)

∇× r = 0. (1.14b)

Here r is the magnitude of the position vector r, and r̂ is the unit vector pointing in the direction of r.

2. (25 points.) Evaluate

∇ ·
( r

r3

)

, (1.15)

everywhere in space, including r = 0.
Hint: Check your answer for consistency by using divergence theorem.

3. (10 points.) Show that

(a) ∇
1

rn
= −r

n

rn+2

(b) ∇
r

rn
= 1

1

rn
− r r

n

rn+2

(c) ∇ · r

rn
=

(3− n)

rn

(d) ∇× r

rn
= 0

4. (10 points.) For the position vector

r = r r̂ = x î + y ĵ+ z k̂, (1.16)

show that

∇r = r̂, ∇ r = 1, ∇ · r = 3, and ∇× r = 0. (1.17)

Further, show that for n 6= 3

∇
r

rn
= 1

1

rn
− r r

n

rn+2
, ∇ · r

rn
=

(3− n)

rn
, and ∇× r

rn
= 0. (1.18)

For n = 3 use divergence theorem to show that

∇ · r

rn
= 4π δ(3)(x). (1.19)

5. (10 points.) (Based on Problem 1.13, Griffiths 4th edition.)
Show that

∇r2 = 2r. (1.20)

Then evaluate ∇r3. Show that

∇
1

r
= − r̂

r2
. (1.21)

Then evaluate ∇(1/r2).

6. (10 points.) Evaluate the left hand side of the equation

∇
1

r3
= α r̂ rn. (1.22)

Thus find α and n.
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7. (10 points.) Evaluate the left hand side of the equation

∇(r · p) = ap+ b r, (1.23)

where p is a constant vector. Thus, find a and b.

8. (20 points.) Evaluate

∇2

(

1

a · r

)

, (1.24)

where a is a constant vector.

9. (20 points.) Given
∇2(a · r)(b · r) = c. (1.25)

Find the scalar c.

10. (20 points.) Evaluate the left hand side of the equation

∇ · (r2r) = a rn. (1.26)

Thus, find a and n.

11. (20 points.) Evaluate

∇

(p · r
r3

)

, (1.27)

where p is a constant vector.

12. (20 points.) Evaluate the left hand side of the equation

∇

(

1

r · p

)

= ap+ b r, (1.28)

where p is a constant vector. Thus, find a and b.

13. (20 points.) Evaluate

∇×
(

m× r

r3

)

, (1.29)

where m is a constant vector.

14. (20 points.) Given the flow velocity field

v = ωρφ̂ (1.30)

determine the vorticity ∇× v of the flow. Illustrate the flow field and the vorticity using the associated
vector field lines. Here ω is a constant, and ρ and φ are cylindrical polar coordinates.

15. (20 points.) Given the flow velocity field

v =
c

ρ
φ̂ (1.31)

determine the vorticity ∇× v of the flow. Illustrate the flow field and the vorticity using the associated
vector field lines. Here c is a constant, and ρ and φ are cylindrical polar coordinates. Let ρ 6= 0.

16. (20 points.) The relation between the vector potential A and the magnetic field B is

B = ∇×A. (1.32)

For a constant (homogeneous in space) magnetic field B, verify that

A =
1

2
B× r (1.33)

is a possible vector potential by showing that Eq. (1.33) satisfies Eq. (1.32).
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17. (20 points.) Evaluate

(a×∇) · (r× b), (1.34)

where r is the the coordinate vector and a and b are coordinate independent vectors.
[2023F-MT01]

18. (20 points.) Show that

∇(r̂ · a) = −1

r
r̂× (r̂× a) (1.35)

for a uniform (homogeneous in space) vector a.

19. (25 points.) Show that

∇ ·
[

P0 r̂ θ(R− r)
]

, (1.36)

for a uniform (homogeneous in space) P0, can be expressed as a sum of two terms, a surface term and a
volume term. Here θ(x) = 1 if x > 0 and 0 otherwise.

20. (20 points.) Consider the dyadic construction of an unitary operator

U = î ĵ+ ĵ î, (1.37)

where î and ĵ are orthonormal vectors satisfying the completeness relation

1 = î î+ ĵ ĵ. (1.38)

Evaluate

tr(U107). (1.39)

[2023F-MT01]

21. (20 points.) Consider the dyadic construction

T = E B (1.40)

built using the vector fields,

E = Ex x̂+ Ey ŷ, (1.41a)

B = B ŷ. (1.41b)

Evaluate the following components of the dyadic:

x̂ ·T · x̂ = x̂ ·T · ŷ = x̂ ·T · ẑ = (1.42a)

ŷ ·T · x̂ = ŷ ·T · ŷ = ŷ ·T · ẑ = (1.42b)

ẑ ·T · x̂ = ẑ ·T · ŷ = ẑ ·T · ẑ = (1.42c)

Evaluate the scalars

Tr(T) = Tii, (1.43a)

Tr(T ·T) = TijTji, (1.43b)

Tr(T ·T ·T) = TijTjkTki. (1.43c)

http://sphics.com/tc/202308-SIU-P500A/files/2022F-P500A-MMMT01.pdf
http://sphics.com/tc/202308-SIU-P500A/files/2022F-P500A-MMMT01.pdf
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Evaluate the following vector field constructions:

x̂ ·T = ŷ ·T = ẑ ·T = (1.44a)

T · x̂ = T · ŷ = T · ẑ = (1.44b)

x̂×T · x̂ = ŷ ×T · x̂ = ẑ×T · x̂ = (1.44c)

x̂×T · ŷ = ŷ ×T · ŷ = ẑ×T · ŷ = (1.44d)

x̂×T · ẑ = ŷ ×T · ẑ = ẑ×T · ẑ = (1.44e)

x̂ ·T× x̂ = x̂ ·T× ŷ = x̂ ·T× ẑ = (1.44f)

ŷ ·T× x̂ = ŷ ·T× ŷ = ŷ ·T× ẑ = (1.44g)

ẑ ·T× x̂ = ẑ ·T× ŷ = ẑ ·T× ẑ = (1.44h)

1.2 Misellaneous

1.2.1 Vector differentiation

1. (10 points.) A gyroid, see Fig. 1.1, is an (infinitely connected triply periodic minimal) surface discovered
by Alan Schoen in 1970. Schoen presently resides in Carbondale and was a professor at SIU in the later
part of his career. Apparently, a gyroid is approximately described by the surface

f(x, y, z) = cosx sin y + cos y sin z + cos z sinx (1.45)

when f(x, y, z) = 0. Using the fact that the gradient operator

∇ = î
∂

∂x
+ ĵ

∂

∂y
+ k̂

∂

∂z
(1.46)

determines the normal vectors on a surface, evaluate

∇f(x, y, z). (1.47)

2. (30 points.) (Based on problem 1.26 Griffiths 4th edition.)
Calculate the Laplacian of the following functions:

(a) Ta = x2 + 2xy + 3z + 4

(b) Tb = sinx sin y sin z

(c) v = x2 x̂+ 3xz2 ŷ − 2xz ẑ

1.2.2 Vector integration

1. (10 points.) (Based on problem 1.32/1.31 Griffiths 4th/3rd edition.)
Check the fundamental theorem for gradients,

∫ b

a

dl ·∇T = T (b)− T (a), (1.48)

using T = x2 + 4xy + 2yz3, the points a = (0, 0, 0), b = (1, 1, 1), and the three paths of Fig. 1.28 in
Griffiths.

2. (10 points.) (Based on problem 1.33/1.32 Griffiths 4th/3rd edition.)
Check the fundamental theorem of divergence,

∫

V

d3x∇ ·E =

∮

S

da ·E, (1.49)
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Figure 1.1: Problem 1.

for the vector field E = x x̂. Use the volume V to be a cube of length L with an edge of the cube parallel
to the x-axis. Using the fact that the divergence of a vector field at a point tells us whether a point is a
source or sink of the field, estimate the distribution of the source and sink for the field E?

3. (20 points.) Evaluate the flux,
∫

S

da · E, (1.50)

of the uniform (homogeneous in space) field

E = E ẑ (1.51)

through the following surfaces:

(a) A hemispherical bowl of radius R placed such that the circle determining the edge of the hemisphere
is on the x-y plane. Show that the result is independent of the position of the center of the circle.

(b) A semicircular cylinder of radius R and length L placed on the x-y plane.

4. (10 points.) (Based on problem 1.34/1.33 Griffiths 4th/3rd edition.)
Check the fundamental theorem of curl,

∫

S

da ·∇×E =

∮

C

dl · E, (1.52)

(where the sense of the line integration is given by the right hand rule: the contour C is traversed in the
sense of the fingers of the right hand and the thumb points in the sense of the orientation of the surface,)
for the vector field E = y x̂+ z ŷ + x ẑ. Use the surface S to be a square of length L on the z = 0 plane
with one side parallel to the x-axis. Using the fact that the curl of a vector field at a point is a measure
of the torque experienced by a (point) dipole at the point, estimate the torque field.

5. (20 points.) Evaluate the vector area of a hemispherical bowl of radius R given by

a =

∫

S

da, (1.53)
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where S stands for the surface of the hemispherical bowl. Next, evaluate the above vector area on the
surface of a sphere.

6. (20 points.) Evaluate the vector area of a spherical ball of radius R using

a =

∫

S

da, (1.54)

where S stands for the surface of the spherical ball. (Caution: The question is discussing the vector area,
which is different from the typical surface area of a sphere.)

1.2.3 Curvilinear coordinates

1. (10 points.) In spherical polar coordinates a point is coordinated by the intersection of family of spheres,
cones, and half-planes, given by

r =
√

x2 + y2 + z2, (1.55a)

θ = tan−1

√

x2 + y2

z2
, (1.55b)

φ = tan−1 y

x
, (1.55c)

respectively. Show that the gradient of these surfaces are given by

∇r = r̂, r̂ = sin θ cosφ î+ sin θ sinφ ĵ+ cos θ k̂, (1.56a)

∇θ = θ̂
1

r
, θ̂ = cos θ cosφ î+ cos θ sinφ ĵ− sin θ k̂, (1.56b)

∇φ = φ̂
1

r sin θ
, φ̂ = − sinφ î + cosφ ĵ, (1.56c)

which are normal to the respective surfaces. Sketch the surfaces and the corresponding normal vectors.
This illustrates that ∇(surface) is a vector (field) normal to the surface.

2. (20 points.) Verify that, ∇r = 1,

î̂i+ ĵ̂j+ k̂k̂ = 1, (1.57a)

r̂r̂+ θ̂θ̂ + φ̂φ̂ = 1. (1.57b)

3. (20 points.) Show that
∂

∂φ
φ̂ = −

[

sin θ r̂+ cos θ θ̂
]

, (1.58)

where (r, θ, φ) are spherical coordinates and r̂, θ̂, and φ̂ are the respective unit vectors in spherical

coordinates. Sketch r̂, θ̂, φ̂, and ∂φ̂/∂φ to illustrate their relative directions.

4. (20 points.) Evaluate the number evaluated by the expression

1

2

[

ρ̂
∂

∂ρ
+ φ̂

1

ρ

∂

∂φ

]

· (ρρ̂), (1.59)

where ρ̂ and φ̂ are the unit vectors for cylindrical coordinates (ρ, φ) given by

ρ̂ = cosφ î+ sinφ ĵ, (1.60)

φ̂ = − sinφ î + cosφ ĵ. (1.61)
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5. (25 points.) Evaluate the number evaluated by the expression

φ̂ ·
(

1

ρ

∂

∂φ
ρ

)

ρ̂, (1.62)

where ρ̂ and φ̂ are the unit vectors for cylindrical coordinates (ρ, φ) given by

ρ̂ = cosφ î+ sinφ ĵ, (1.63)

φ̂ = − sinφ î + cosφ ĵ. (1.64)

6. (20 points.) The gradient operator in cylinderical coordinates (ρ, φ, z) is

∇ = ρ̂
∂

∂ρ
+ φ̂

1

ρ

∂

∂φ
+ ẑ

∂

∂z
. (1.65)

The electric field of an infinitely long rod of negligible thickness is given by

E =
1

4πε0

2λ

ρ
ρ̂, (1.66)

where λ is the charge per unit length on the rod. Evaluate

∇ · E. (1.67)

Hint: The divergence of electric field at a point in space is a measure of the charge density at that point.
It satisfies the Gauss’s law.

7. (10 points.) Determine the right hand side of the following expression for all r. (You do not need to
show your work.)

∇ · r

r3
= (1.68)

1.2.4 Divergence in curvilinear coordinates

1. (20 points.) Evaluate

∇ ·
(

r̂

r2

)

, (1.69)

where r is the coordinate vector. Deduce that Eq. (1.69) can not be zero everywhere in space. Express
Eq. (1.69) in terms of δ-functions.

1.2.5 Curl in curvilinear coordinates

Let the unit vectors associated with curvilinear coordinates (ξ1, ξ2, ξ3) be (ê1, ê2, ê3) and let (h1, h2, h3) be the
respective scale factors. The gradient operator in these coordinates has the form

∇ = ê1
1

h1

∂

∂ξ1
+ ê2

1

h2

∂

∂ξ2
+ ê3

1

h3

∂

∂ξ3
. (1.70)

A vector field N(ξ1, ξ2, ξ3) in these coordinates has the form

N = N1(ξ1, ξ2, ξ3) ê1 +N2(ξ1, ξ2, ξ3) ê2 +N3(ξ1, ξ2, ξ3) ê3. (1.71)

The curl in these coordinates can be evaluated as the determinant

∇×N =
1

h1h2h3

∣

∣

∣

∣

∣

∣

∣

∣

∣

h1ê1 h2ê2 h3ê3

∂

∂ξ1

∂

∂ξ2

∂

∂ξ3

h1N1 h2N2 h3N3

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (1.72)
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1. (20 points.) Given
N = ẑ ln ρ (1.73)

and the gradient operator

∇ = ρ̂
∂

∂ρ
+ φ̂

1

ρ

∂

∂φ
+ ẑ

∂

∂z
(1.74)

evaluate
∇×N. (1.75)

2. (20 points.) Given

N =
φ̂

ρ
(1.76)

and the gradient operator

∇ = ρ̂
∂

∂ρ
+ φ̂

1

ρ

∂

∂φ
+ ẑ

∂

∂z
(1.77)

evaluate
∇×N. (1.78)

Here (ρ, φ, z) are cylindrical coordinate variables. Deduce that Eq. (1.78) can not be zero everywhere in
space. Express Eq. (1.78) in terms of δ-functions.

3. (20 points.) Given

N = φ̂
ρ

(ρ2 + z2)
3

2

(1.79)

and the gradient operator

∇ = ρ̂
∂

∂ρ
+ φ̂

1

ρ

∂

∂φ
+ ẑ

∂

∂z
(1.80)

evaluate
∇×N. (1.81)

4. (20 points.) Given

N = φ̂
sin θ

r2
(1.82)

and the gradient operator

∇ = r̂
∂

∂r
+ θ̂

1

r

∂

∂θ
+ φ̂

1

r sin θ

∂

∂φ
(1.83)

evaluate
∇×N. (1.84)

1.3 Heaviside step-function

1. (20 points.) The Heaviside step function, named after Oliver Heaviside (1850-1925), has the integral
representation

θ(x) =

∫ x

−∞
dx′δ(x′). (1.85)

(a) Evaluate θ(x) for x < 0.

(b) Evaluate θ(x) for x > 0.

(c) What about θ(0)? We could postulate that

θ(0) =
1

2

[

lim
ε→0

θ(x − ε) + lim
ε→0

θ(x+ ε)
]

. (1.86)

Evaluate θ(0) obtained using Eq. (1.86).

(d) Plot θ(x) versus x.
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1.4 δ-function distributions

1. (10 points.) Assume 0 < a < b. Consider the distribution

δ(x − a) = lim
b→a

θ(ρ− a)θ(b− ρ)

(b− a)
(1.87)

constructed using Heaviside step-functions. Show that

δ(x− a)

{

→ ∞, if x = a,

→ 0, if x 6= a.
(1.88)

Further, show that
∫ ∞

−∞
dx δ(x− a) = 1. (1.89)

Plot δ(x− a) before taking the limit b→ a and identify the length (b − a) in the plot.

2. (10 points.) Consider the distribution

δ(x) = lim
ε→0

ε

x2 + ε2
1

π
. (1.90)

Show that

δ(x)

{

→ ∞, if x = 0,

→ 0, if x 6= 0.
(1.91)

Further, show that
∫ ∞

−∞
dx δ(x) = 1. (1.92)

Plot δ(x) before taking the limit ε→ 0 and identify ε in the plot.

3. (10 points.) Consider the distribution

δ(x) = lim
ǫ→0

ǫ2

(x2 + ǫ2)
3

2

1

2
. (1.93)

Show that

δ(x) =

{

→ 1
ǫ
→ ∞, if x = 0,

→ ǫ2

x3 → 0, if x 6= 0.
(1.94)

Further, show that
∫ ∞

−∞
dx δ(x) = 1. (1.95)

Plot δ(x) before taking the limit ε→ 0 and identify ε in the plot.

4. (10 points.) Consider the distribution

δ(x) = lim
ǫ→0

ǫn−1

(x2 + ǫ2)
n
2

1√
π

Γ
(

n−1
2

)

Γ
(

n
2

) . (1.96)

Show that

δ(x) =

{

→ 1
ǫ
→ ∞, if x = 0,

→ ǫn−1

xn → 0, if x 6= 0.
(1.97)

Further, show that
∫ ∞

−∞
dx δ(x) = 1. (1.98)

Plot δ(x) before taking the limit ε→ 0 and identify ε in the plot.
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5. (10 points.) Consider the distribution

δ(x) = lim
σ→0

1√
2πσ

e−
x2

2σ . (1.99)

Show that

δ(x)

{

→ ∞, if x = 0,

→ 0, if x 6= 0.
(1.100)

Further, show that
∫ ∞

−∞
dx δ(x) = 1. (1.101)

Plot δ(x) before taking the limit σ → 0 and identify σ in the plot.

6. (10 points.) Consider the distribution

δ(x) = lim
ε→0

e−
|x|
ε

2ε
. (1.102)

Show that

δ(x)

{

→ ∞, if x = 0,

→ 0, if x 6= 0.
(1.103)

Further, show that
∫ ∞

−∞
dx δ(x) = 1. (1.104)

Plot δ(x) before taking the limit ε→ 0 and identify ε in the plot.

7. (10 points.) Consider the distribution

δ(x) = lim
N→∞

∫ Nk0

−Nk0

dk

2π
eikx = lim

N→∞

1

π

sinNk0x

x
. (1.105)

Show that

δ(x)

{

→ ∞, if x = 0,

→ 0, if x 6= 0.
(1.106)

Further, show that
∫ ∞

−∞
dx δ(x) =

1

π

∫ ∞

−∞

dx

x
sinx = 1. (1.107)

Hint: The last integral is nicely evaluated by continuing to the complex plane. Otherwise, to evaluate the
integral construct

I(a) =

∫ ∞

0

dx

x
e−ax sinx (1.108)

and learn that

−I ′(a) =
∫ ∞

0

dx e−ax sinx. (1.109)

Integrating by parts twice deduce

−I ′(a) = 1

1 + a2
(1.110)

and integrate to conclude

I(a) =
π

2
− tan−1 a. (1.111)

8. (20 points.) Justify the relation

θ(x) =

∫ x

−∞
dx′ δ(x′). (1.112)
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1.4.1 Application of δ-functions

1. (70 points.) (Based on problem 1.44,45/1.43,44 Griffiths 4th/3rd edition.)
Evaluate the following integrals:

(a)
∫ 6

2
dx
[

3x2 − 2x− 3
]

δ(x− 3)

(b)
∫ 7

−7
dx sinx δ(x− π)

(c)
∫ 3

0
dxx3 δ(x+ 1)

(d)
∫ 2

−2
dx [3x+ 3] δ(3x)

(e)
∫ 2

−2
dx [3x+ 3] δ(−3x)

(f)
∫ 2

0 dx [3x+ 3] δ(1 − x)

(g)
∫ 1

−1 dx 9x
3 δ(3x+ 1)

2. (10 points.) Evaluate the integral
∫ 1

−1

δ(1− 3x)

x
dx. (1.113)

Hint: Be careful to avoid a possible error in sign.

3. (20 points.) Evaluate the integral

∫ 1

−1

dx δ(1 − 2x)
[

8x2 + 2x− 1
]

. (1.114)

(Caution: Be careful to avoid a possible error in sign.)

4. (30 points.) (Based on problem 1.47/1.46 Griffiths 4th/3rd edition.)

(a) Express the charge density ρ(r) of a point charge Q positioned at ra in terms of δ-functions. Verify
that the volume integral of ρ equals Q.

(b) Express the charge density of an infinitely long wire, of uniform charge per unit length λ and parallel
to z-axis, in terms of δ-functions.

(c) Express the charge density of an infinite plate, of uniform charge per unit area σ and parallel to
xy-plane, in terms of δ-functions.

5. Problem 1.2, Jackson 3rd edition.

6. Problem 1.3, Jackson 3rd edition.

7. (10 points.) An (idealized) infinitely long wire, (on the z-axis with infinitesimally small cross sectional
area,) carrying a current I can be mathematically represented by the current density

J(x) = ẑ I δ(x)δ(y). (1.115)

A similar idealized wire forms a circular loop and is placed on the xy-plane with the center of the circular
loop at the origin. Write down the current density of the circular loop carrying current I.

8. (10 points.) A uniformly charged spherical shell of radius a and total charge Q is described by charge
density

ρ(x) =
Q

4πa2
δ(r − a). (1.116)

Verify that the volume integral of ρ equals Q.
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9. (10 points.) A uniformly charged infinitely thin disc of radius a and total charge Q is placed on the
z = 0 plane such that the normal vector on the disc is along the z axis and the center of the disc at the
origin. Write down the charge density of the disc in terms of δ-function(s) and Heaviside step function(s).
Integrate the charge density over all space to verify that it indeed returns the total charge on the disc.
[2023F-MT01]

10. (20 points.) A uniformly charged infinitely thin wire of length a and total charge Q is placed on the z
axis such that one end of the wire is at the origin. Write down the charge density of the wire in terms of
δ-function(s) and Heaviside step function(s). Integrate the charge density over all space to verify that it
indeed returns the total charge on the wire.

11. (10 points.) Write down the charge density for the following configurations: Point charge, line charge,
surface charge, uniformly charged disc, uniformly charged ring, uniformly charged shell, uniformly charged
spherical ball.

12. (10 points.) δ(ax), δ(ax+ b) for a > 0, δ(ax+ b) for a < 0, δ′(x), δ′′(x),

13. (10 points.) The distance between two points r and r′ in rectangular coordinates is explicitly given by

|r− r′| =
√

(x − x′)2 + (y − y′)2 + (z − z′)2. (1.117)

The charge density of a charge q at the origin is described in terms of delta functions as

ρ(r) = qδ(x)δ(y)δ(z). (1.118)

Evaluate the electric potential at the observation point r, due to a point charge q placed at source point
r′, using

φ(r) =
1

4πε0

∫

d3r′
ρ(r′)

|r− r′| , (1.119)

where
∫

d3r′ =
∫∞
−∞ dx′

∫∞
−∞ dy′

∫∞
−∞ dz′. That is, evaluate the three integrals in

φ(r) =
q

4πε0

∫ ∞

−∞
dx′
∫ ∞

−∞
dy′
∫ ∞

−∞
dz′

δ(x′)δ(y′)δ(z′)
√

(x− x′)2 + (y − y′)2 + (z − z′)2
. (1.120)

14. (10 points.) Evaluate
d

dz
|z| (1.121)

and
d2

dz2
|z|, (1.122)

in terms of the Heaviside step function

θ(z) =

{

0, z < 0,

1, z > 0,
(1.123)

and the delta function.

1.5 δ-functions in infinite dimensional spaces

δ-functions is the generalization of the unit matrix 1, in finite dimensional vector space, in infinite dimensional
vector space. In particular, it is expected to contain the information regarding the dimensionality of the infinite
dimensional. Recall Tr (1) is equal to the dimension of a finite dimensional vector space. However, recall that
the dimension of a countable set in counter intuitive, but well defined.

http://sphics.com/tc/202308-SIU-P500A/files/2022F-P500A-MMMT01.pdf


Chapter 2

Vector space

2.1 Curvilinear coordinates

1. (Example.) Let r represent the position vector, xi the components of the position vector in rectangular
coordinates, and ui the components of the position vector in cylindrical polar coordinates. In particular,
we have

x1 = x = ρ cosφ, u1 = ρ =
√

x2 + y2, (2.1a)

x2 = y = ρ sinφ, u2 = φ = tan−1 y

x
, (2.1b)

x3 = z = z, u3 = z = z. (2.1c)

Let us define the unit vectors

ρ̂ = cosφ î + sinφ ĵ+ 0 k̂, (2.2a)

φ̂ = − sinφ î+ cosφ ĵ+ 0 k̂, (2.2b)

ẑ = 0 î+ 0 ĵ+ k̂, (2.2c)

where î, ĵ, and k̂ are basis vectors in rectangular coordinate system. We will also use the notation
î = x̂1 = x̂1, ĵ = x̂2 = x̂2, k̂ = x̂3 = x̂3, to represent these vectors.

(a) Basis vectors:

ei =
∂r

∂ui
. (2.3)

Show that
e1 = ρ̂, e2 = ρφ̂, e3 = ẑ. (2.4)

(b) Reciprocal basis vectors:
ei = ∇ui. (2.5)

Show that

e1 = ρ̂, e2 =
φ̂

ρ
, e3 = ẑ. (2.6)

(c) Orthonormality: Show that
ei · ej = δij . (2.7)

(d) Metric tensor: A line element is defined as

dr = dxix̂i = duiei. (2.8)

19
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Show that

dr · dr = duidujgij , (2.9)

where the metric tensor gij is defined as

gij = ei · ej . (2.10)

Evaluate all the components of gij .

(e) Completeness relation: Starting from

∇ r = 1 (2.11)

derive the completeness relation

ei ei = 1. (2.12)

Express the completeness relation in cylindrical polar coordinates in terms of ρ̂, φ̂, and ẑ.

2. (20 points.) Transformation of basis vectors.

(a) Let us consider a set of basis vectors ei, where i = 1, 2, 3, and the associated reciprocal basis vectors
ei that satisfy the completeness relation

1 = ei ei = e1e1 + e2e2 + e3e3. (2.13)

It is a complete set because an arbitrary vector A can be expressed in terms of it’s projections along
the basis vectors in the following way,

A = A · 1 = A · (ei ei) = (A · ei) ei = Ai ei, (2.14)

where we recognized and defined the projections of vector A along the direction of basis vectors as
the components

Ai = (A · ei). (2.15)

Similarly, multiplying by the identity dyadic on the left gives

A = 1 ·A = (ei ei) ·A = ei (ei ·A) = eiAi, (2.16)

where now the projections of vector A in the direction of the reciprocal basis vectors are the compo-
nents

Ai = (ei ·A). (2.17)

For consistency we require the equality

(A · ei) ei = ei (ei ·A). (2.18)

Thus, derive

Aj = gjiAi, (2.19a)

Aj = gjiA
i, (2.19b)

where the metric tensors are defined as

gji = ej · ei, (2.20a)

gji = ej · ei. (2.20b)
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(b) For another set of basis vectors gi and the associated reciprocal basis vectors gi that satisfy the
completeness relation

1 = gi gi (2.21)

we can write

A = (A · gi)gi = Āi gi, (2.22)

where the components Āi are in general different from Ai, and

A = gi (gi ·A) = gi Āi. (2.23)

For consistency we require the equality

(A · gi)gi = gi (gi ·A). (2.24)

Thus, derive

Āj = ḡjiĀi, (2.25a)

Āj = ḡjiĀ
i, (2.25b)

where the metric tensors are defined as

ḡji = gj · gi, (2.26a)

ḡji = gj · gi. (2.26b)

(c) For consistency between the two independent basis vector representations we require the equality

(A · ei) ei = (A · gi)gi. (2.27)

Taking the dot product on the right with ej and using orthogonality relation

ei · ei = δij (2.28)

we obtain
(A · ej) = (A · gi) [gi · ej ]. (2.29)

Similarly, taking the dot product on the right with gj we obtain

(A · ei) [ei · gj ] = (A · gj). (2.30)

In terms of the transformation matrices connecting the two basis vectors,

Si
j = [gi · ej] (2.31)

and
Ri

j = [ei · gj ], (2.32)

we can derive the transformation of the components

Aj = ĀiSi
j , (2.33a)

AiRi
j = Āj . (2.33b)

Further, derive

Aj = Rj
iĀi, (2.34a)

Sj
iAi = Āj . (2.34b)

Show that
Ri

jSj
k = [ei · gj ][gj · ek] = ei · (gj gj) · ek = ei · 1 · ek = δki . (2.35)
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(d) i. Find the transformation matrices S and T between cylindrical polar coordinates and rectangular
coordinates. Verify that ST = 1.

ii. Find the transformation matrices S and T between cylindrical polar coordinates and spherical
polar coordinates. Verify that ST = 1.

3. (Example.) Let r represent the position vector, xi the components of the position vector in rectangular
coordinates, and ui the components of the position vector in spherical polar coordinates. In particular,
we have

x1 = x = r sin θ cosφ, u1 = r =
√

x2 + y2 + z2, (2.36a)

x2 = y = r sin θ sinφ, u2 = θ = tan−1

√

x2 + y2

z
, (2.36b)

x3 = z = r cos θ, u3 = φ = tan−1 y

x
. (2.36c)

Let us define the unit vectors

r̂ = sin θ cosφ î+ sin θ sinφ ĵ+ cos θ k̂, (2.37a)

θ̂ = cos θ cosφ î+ cos θ sinφ ĵ− sin θ k̂, (2.37b)

φ̂ = − sinφ î+ cosφ ĵ, (2.37c)

where î, ĵ, and k̂ are basis vectors in rectangular coordinate system. We will also use the notation
î = x̂1 = x̂1, ĵ = x̂2 = x̂2, k̂ = x̂3 = x̂3, to represent these vectors.

(a) Basis vectors:

ei =
∂r

∂ui
. (2.38)

Show that
e1 = r̂, e2 = rθ̂, e3 = r sin θφ̂. (2.39)

(b) Reciprocal basis vectors:
ei = ∇ui. (2.40)

Show that

e1 = r̂, e2 =
θ̂

r
, e3 =

φ̂

r sin θ
. (2.41)

(c) Orthonormality: Show that
ei · ej = δij . (2.42)

(d) Metric tensor: A line element is defined as

dr = dxix̂i = duiei. (2.43)

Show that
dr · dr = duidujgij , (2.44)

where the metric tensor gij is defined as

gij = ei · ej . (2.45)

Evaluate all the components of gij .

(e) Completeness relation: Starting from
∇r = 1 (2.46)

derive the completeness relation
eiei = 1. (2.47)

Express the completeness relation in spherical polar coordinates in terms of r̂, θ̂, and φ̂.
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(f) Transformation matrix: The components of a vector A are defined using the relations

A = A · 1 = Aix̂i = Āiei, (2.48a)

A = 1 ·A = x̂iAi = eiĀi. (2.48b)

Then, derive the transformations

Āj = AiTi
j , Ti

j = x̂i · ej , (2.49a)

Āj = Sj
iAi, Sj

i = ej · x̂i, (2.49b)

and show that Ti
jSj

k = δki . Find S and T for spherical polar coordinates.

4. (Example.) Let r represent a position vector in three dimensional space. Let xi be the components of
the position vector in rectangular coordinates, which can be interpreted as surfaces of constant xi. Let us
coordinatize the space using the planes, labeled using β,

y = mx+ β (2.50)

wherem is fixed, instead of planes with constant y. The other two sets of planes of constant x and constant
z are the same. See Fig. 2.1. Let ui be the components of the position vector in this new coordinatization
of space. In particular, we have

e1

e2

e1

e2

Figure 2.1: Basis vectors ei and reciprocal basis vectors ei.

x1 = x = α, u1 = α = x, (2.51a)

x2 = y = mx+ β, u2 = β = y −mx, (2.51b)

x3 = z = γ, u3 = γ = z. (2.51c)

The basis vectors î, ĵ, and k̂ in rectangular coordinate system will be represented as î = x̂1 = x̂1,
ĵ = x̂2 = x̂2, k̂ = x̂3 = x̂3, if necessary.

(a) Basis vectors:

ei =
∂r

∂ui
. (2.52)

Show that
e1 = î+m ĵ, e2 = ĵ, e3 = k̂. (2.53)

(b) Reciprocal basis vectors:
ei = ∇ui. (2.54)

Show that
e1 = î, e2 = −m î+ ĵ, e3 = k̂. (2.55)
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Verify the relations

e1 =
e2 × e3

(e2 × e3) · e1
, e2 =

e3 × e1

(e3 × e1) · e2
, e3 =

e1 × e2

(e1 × e2) · e3
. (2.56)

(c) Orthonormality: Show that
ei · ej = δij . (2.57)

That is,

e1 · e1 = 1, e1 · e2 = 0, e1 · e3 = 0, (2.58a)

e2 · e1 = 0, e2 · e2 = 1, e2 · e3 = 0, (2.58b)

e3 · e1 = 0, e3 · e2 = 0, e3 · e3 = 1. (2.58c)

(d) Metric tensor: The metric tensor gij is defined as

gij = ei · ej . (2.59)

Evaluate all the components of gij . That is,

g11 = e1 · e1 = 1 +m2, g12 = e1 · e2 = m, g13 = e1 · e3 = 0, (2.60a)

g21 = e2 · e1 = m, g22 = e2 · e2 = 1, g23 = e2 · e3 = 0, (2.60b)

g31 = e3 · e1 = 0, g32 = e3 · e2 = 0, g33 = e3 · e3 = 1. (2.60c)

Similarly evaluate the components of
gij = ei · ej . (2.61)

That is,

g11 = e1 · e1 = 1, g12 = e1 · e2 = −m, g13 = e1 · e3 = 0, (2.62a)

g21 = e2 · e1 = −m, g22 = e2 · e2 = 1 +m2, g23 = e2 · e3 = 0, (2.62b)

g31 = e3 · e1 = 0, g32 = e3 · e2 = 0, g33 = e3 · e3 = 1. (2.62c)

Verify that gijgjk = δik.

(e) Completeness relation: Verify the completeness relation

eiei = 1 (2.63)

by evaluating
e1e1 + e2e2 + e3e3. (2.64)

(f) Given a vector

A = a î+ b ĵ+ c k̂ (2.65)

in rectangular coordinates, find the components of the vector A in the basis of ei. That is, find the
components Ai in

A = A1 e1 +A2 e2 +A3 e3. (2.66)

5. (20 points.) In terms of the unit vectors

ρ̂ = cosφ î + sinφ ĵ+ 0 k̂, (2.67a)

φ̂ = − sinφ î+ cosφ ĵ+ 0 k̂, (2.67b)

ẑ = 0 î+ 0 ĵ+ k̂, (2.67c)
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where î, ĵ, and k̂ are basis vectors in rectangular coordinate system the basis vectors in cylindrical polar
coordinates are

e1 = ρ̂, e2 = ρφ̂, e3 = ẑ. (2.68)

Evaluate all the components of the metric tensor

gij = ei · ej . (2.69)

6. (Half-Sinusoidal coordinates.) Let r represent a position vector in three dimensional space. Let xi be
the components of the position vector in rectangular coordinates, which can be interpreted as surfaces of
constant xi. Let us coordinatize the space using a sinusoidally corrugated planes labeled using t, and two
planes, labeled using s and x,

t = z − h sin ky, (2.70a)

s = y, (2.70b)

x = x, (2.70c)

where h is the amplitude of the corrugations and λ = 2π/k is the wavelength of the corrugations. See
Fig. 2.2. Let ui be the components of the position vector in this new coordinatization of space. In
particular, we have

e2

e3 e2e3

b

e1

e1

b

y

z

x

Figure 2.2: Basis vectors ei and reciprocal basis vectors ei.

x1 = x = x, u1 = x = x, (2.71a)

x2 = y = s, u2 = s = y, (2.71b)

x3 = z = t+ h sin ks, u3 = t = z − h sinky. (2.71c)

The basis vectors î, ĵ, and k̂ in rectangular coordinate system will be represented as î = x̂1 = x̂1,
ĵ = x̂2 = x̂2, k̂ = x̂3 = x̂3, if necessary. We shall use the short hand notation

α = hk cos ky = hk cos ks. (2.72)

(a) Tangent vectors:

ei =
∂r

∂ui
. (2.73)

Show that
e1 = î, e2 = ĵ+ αk̂, e3 = k̂. (2.74)

(b) Normal vectors:
ei = ∇ui. (2.75)
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Show that

e1 = î, e2 = ĵ, e3 = −α ĵ+ k̂. (2.76)

Verify the relations

ei × ej = εijke
k, (2.77)

ei × ej = εijkek. (2.78)

(c) Orthonormality: Show that

ei · ej = δij . (2.79)

That is,

e1 · e1 = 1, e1 · e2 = 0, e1 · e3 = 0, (2.80a)

e2 · e1 = 0, e2 · e2 = 1, e2 · e3 = 0, (2.80b)

e3 · e1 = 0, e3 · e2 = 0, e3 · e3 = 1. (2.80c)

(d) Metric tensor: The metric tensor gij is defined as

gij = ei · ej . (2.81)

Evaluate all the components of gij . That is,

g11 = e1 · e1 = 1, g12 = e1 · e2 = 0, g13 = e1 · e3 = 0, (2.82a)

g21 = e2 · e1 = 0, g22 = e2 · e2 = 1 + α2, g23 = e2 · e3 = α, (2.82b)

g31 = e3 · e1 = 0, g32 = e3 · e2 = α, g33 = e3 · e3 = 1. (2.82c)

Similarly evaluate the components of

gij = ei · ej . (2.83)

That is,

g11 = e1 · e1 = 1, g12 = e1 · e2 = 0, g13 = e1 · e3 = 0, (2.84a)

g21 = e2 · e1 = 0, g22 = e2 · e2 = 1, g23 = e2 · e3 = −α, (2.84b)

g31 = e3 · e1 = 0, g32 = e3 · e2 = −α, g33 = e3 · e3 = 1 + α2. (2.84c)

Verify that gijgjk = δik.

(e) Completeness relation: Verify the completeness relation

eiei = 1 (2.85)

by evaluating

e1e1 + e2e2 + e3e3. (2.86)

(f) Given a vector

A = a î+ b ĵ+ c k̂ (2.87)

in rectangular coordinates, find the components of the vector A in the basis of ei. That is, find the
components Ai in

A = A1 e1 +A2 e2 +A3 e3. (2.88)
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7. (Sinusoidal coordinates.) Let r represent a position vector in two dimensional space. Let xi be the
components of the position vector in rectangular coordinates, which can be interpreted as surfaces of
constant xi. Let us coordinatize the space using sinusoidally corrugated planes labeled using x′ and y′,

x = x′ − h sin ky, (2.89a)

y = y′ + h sinkx, (2.89b)

z = z′, (2.89c)

where h is the amplitude of the corrugations and λ = 2π/k is the wavelength of the corrugations. See
Fig. 2.3. Let ui be the components of the position vector in this new coordinatization of space. In
particular, we have

Figure 2.3: Coordinate chart using sinusoidal coordinates.

x1 = x = x′ − h sin ky, u1 = x′ = x+ h sinky, (2.90a)

x2 = y = y′ + h sin kx, u2 = y′ = y − h sinkx. (2.90b)

The basis vectors î and ĵ in rectangular coordinate system will be represented as î = x̂1 = x̂1, ĵ = x̂2 = x̂2,
if necessary.

(a) Tangent vectors:

ei =
∂r

∂ui
. (2.91)

Show that

e1 =
î+ ĵ kh cos kx

1 + k2h2 cos kx cos ky
, (2.92a)

e2 =
−î kh cos ky + ĵ

1 + k2h2 cos kx cos ky
. (2.92b)

(b) Normal vectors:
ei = ∇ui. (2.93)

Show that

e1 = î+ ĵ kh cos ky, (2.94a)

e2 = −î kh cos kx+ ĵ. (2.94b)

(c) Orthonormality: Show that
ei · ej = δij . (2.95)
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That is,

e1 · e1 = 1, e1 · e2 = 0, (2.96a)

e2 · e1 = 0, e2 · e2 = 1. (2.96b)

(d) Metric tensor: The metric tensor gij is defined as

gij = ei · ej . (2.97)

Evaluate all the components of gij . That is,

g11 = e1 · e1 =
1 + k2h2 cos2 kx

(1 + k2h2 cos kx cos ky)2
, g12 = e1 · e2 =

kh coskx− kh cos ky

(1 + k2h2 cos kx cos ky)2
, (2.98a)

g21 = e2 · e1 =
kh coskx− kh cosky

(1 + k2h2 cos kx cos ky)2
, g22 = e2 · e2 =

1 + k2h2 cos2 ky

(1 + k2h2 cos kx cos ky)2
. (2.98b)

Similarly evaluate the components of
gij = ei · ej . (2.99)

That is,

g11 = e1 · e1 = 1 + k2h2 cos2 ky, g12 = e1 · e2 = −(kh cos kx− kh cos ky), (2.100a)

g21 = e2 · e1 = −(kh coskx− kh cos ky), g22 = e2 · e2 = 1 + k2h2 cos2 kx. (2.100b)

Verify that gijgjk = δik.

(e) Completeness relation: Verify the completeness relation

eiei = 1 (2.101)

by evaluating
e1e1 + e2e2. (2.102)

8. (20 points.) Is the coordinate chart using sinusoidal coordinates in Fig. 2.4 well defined?

(a) Find the points where the tangent vectors align–what is the implication.

(b) The intersection of a curve of fixed x′ and a curve of fixed y′ is multivalued. Thus, is this a well-defined
chart?

(c) Is there a doubly periodic minimal curve?

2.2 Connection, Christoffel symbols

The connection is defined as
(∇ei). (2.103)

Berry connection Ai
k captures the projections of the connection to the right,

Ai
k = (∇ei) · ek =

(

∇
∂r

∂ui

)

· ∂u
k

∂r
. (2.104)

Similarly we can define

Ak
i = (∇ek) · ei =

(

∇
∂uk

∂r

)

· ∂r
∂ui

. (2.105)

Taking the gradient of the identity ei · ek = δki , we observe

(∇ei) · ek + (∇ek) · ei = 0, (2.106)
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x

y

Figure 2.4: Coordinate chart using sinusoidal coordinates.

and deduce the antisymmetric property
Ai

k = −Ak
i. (2.107)

The projections of the connection to the left

Aij = ej ·∇ei =
∂ei
∂uj

(2.108)

captures the changes in the basis vectors ei in the direction of ej. The Christoffel symbols Γk
ij captures all the

projections of the connection,

ej · (∇ei) · ek =

(

∂

∂uj
ei

)

· ek = Aij · ek = Γk
ij . (2.109)

1. (10 points.) The contravariant basis vectors are

ei = ∇ui. (2.110)

Using the completeness relation we have

ei = 1 ·∇ui = ekek ·∇ui. (2.111)

Consistency, then, requires that
ek ·∇ui = δk

i. (2.112)

This suggests the identification

ek ·∇ =
∂

∂uk
. (2.113)
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2. (20 points.) [Cylindrical coordinates] The tangent and normal vectors for the cylindrical coordinate
system are

e1 = eρ = ρ̂, e1 = eρ = ρ̂, (2.114a)

e2 = eφ = ρφ̂, e2 = eφ =
φ̂

ρ
, (2.114b)

e3 = ez = ẑ, e3 = ez = ẑ. (2.114c)

Compute the Berry connection for the cylindrical coordinate system to be

Aij =





0 φ̂ 0

φ̂ −ρρ̂ 0
0 0 0



 =









0
e2

ρ
0

e2

ρ
−ρe1 0

0 0 0









. (2.115)

Compute the Christoffel symbols for the cylindrical coordinate system. Show that the non-zero Christoffel
symbols in cylindrical coordinates are

Γ1
22 = Γρ

φφ = −ρ, (2.116)

Γ2
12 = Γφ

ρφ =
1

ρ
, (2.117)

Γ2
21 = Γφ

φρ =
1

ρ
. (2.118)

3. (20 points.) [Cylindrical coordinates] The tangent and normal vectors for the cylindrical coordinate
system are

e1 = eρ = ρ̂, e1 = eρ = ρ̂, (2.119a)

e2 = eφ = ρφ̂, e2 = eφ =
φ̂

ρ
, (2.119b)

e3 = ez = ẑ, e3 = ez = ẑ. (2.119c)

The connection is defined as

(∇ei). (2.120)

Berry connection Ai
k captures the projections of the connection to the right,

Ai
k = (∇ei) · ek. (2.121)

Compute the Berry connection Ai
k for the cylindrical coordinate system to be

Ai
k =















0
φ̂

ρ2
0

−φ̂ ρ

ρ2
0

0 0 0















. (2.122)

The Christoffel symbols Γk
ij captures all the projections of the connection,

ej · (∇ei) · ek = Γk
ij . (2.123)
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Compute the Christoffel symbols for the cylindrical coordinate system. Show that the non-zero Christoffel
symbols in cylindrical coordinates are

Γ1
22 = Γρ

φφ = −ρ, (2.124)

Γ2
12 = Γφ

ρφ =
1

ρ
, (2.125)

Γ2
21 = Γφ

φρ =
1

ρ
. (2.126)

4. (10 points.) [Spherical coordinates] In term of unit vectors

r̂ = sin θ cosφ î+ sin θ sinφ ĵ+ cos θ k̂, (2.127a)

θ̂ = cos θ cosφ î+ cos θ sinφ ĵ− sin θ k̂, (2.127b)

φ̂ = − sinφ î+ cosφ ĵ, (2.127c)

the tangent and normal vectors for spherical polar coordinates are

e1 = er = r̂ e1 = er = r̂, (2.128a)

e2 = eθ = rθ̂ e2 = eθ =
1

r
θ̂, (2.128b)

e3 = eφ = r sin θφ̂ e3 = eφ =
1

r sin θ
φ̂. (2.128c)

Compute the following projections of the connection for the spherical coordinate system to be

Aij =





0 θ̂ sin θφ̂

θ̂ −rr̂ r cos θφ̂

sin θφ̂ r cos θφ̂ −r sin θ(sin θr̂+ cos θθ̂



 (2.129a)

=













0
êθ

r

êφ

r
êθ

r
−rêr cot θêφ

êφ

r
cot θêφ −r sin2 θêr − sin θ cos θêθ













. (2.129b)

Compute the Christoffel symbols
Γk
ij = Aij · ek (2.130)

for the spherical coordinate system.

5. (10 points.) [Sinusoidal coordinates] The tangent and normal vectors for sinusoidal coordinates, intro-
duced in Section 2.1 Item 6, are

e1 = î e1 = î, (2.131a)

e2 = ĵ+ αk̂ e2 = ĵ, (2.131b)

e3 = k̂ e3 = −αĵ+ k, (2.131c)

where α = hk cos ks = hk coshy. Compute the following projections of the connection for the sinusoidal
coordinate system to be

Aij =





0 0 0
0 −kαê3 0
0 0 0



 (2.132)

Compute the Christoffel symbols
Γk
ij = Aij · ek (2.133)

for the spherical coordinate system.
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2.3 Curvature

Curvature is a measure of the change in change in the basis vectors,

∇∇ei. (2.134)

Berry curvature is defined as
Ωi

k = ∇×Ai
k. (2.135)

Riemann curvature is defined as

Ωbci
k = (Ωi

k)aεabc = ∇b(Ai
k)c −∇c(Ai

k)b. (2.136)

1. (10 points.)

2.4 Vector calculus in cylindrical polar coordinates

1. (10 points.) In cylindrical polar coordinates a point in space is coordinatized by the intersection of family
of right circular cylinders, half-planes, and planes, given by

ρ =
√

x2 + y2, (2.137a)

φ = tan−1 y

x
, (2.137b)

z = z, (2.137c)

respectively. Show that the gradient of these surfaces are given by

∇ρ = ρ̂, ρ̂ = cosφ î+ sinφ ĵ+ 0 k̂, (2.138a)

∇φ = φ̂, φ̂ = − sinφ î+ cosφ ĵ+ 0 k̂, (2.138b)

∇z = ẑ, ẑ = 0 î+ 0 ĵ+ k̂, (2.138c)

which are normal to the respective surfaces. Sketch the surfaces and the corresponding normal vectors.
This illustrates that ∇(surface) is a vector (field) normal to the surface.

2. (10 points.) The action of the gradient operator in cylindrical polar coordinates,

∇ = ρ̂
∂

∂ρ
+ φ̂

1

ρ

∂

∂φ
+ ẑ

∂

∂z
, (2.139)

will involve the derivatives of the unit vectors in cylindrical polar coordinates. Evaluate the following

∂

∂ρ
ρ̂ = 0,

∂

∂ρ
φ̂ = 0,

∂

∂ρ
ẑ = 0, (2.140a)

∂

∂φ
ρ̂ = φ̂,

∂

∂φ
φ̂ = −ρ̂, ∂

∂φ
ẑ = 0, (2.140b)

∂

∂z
ρ̂ = 0,

∂

∂z
φ̂ = 0,

∂

∂z
ẑ = 0. (2.140c)

Visualize the above variational statements graphically.

3. (10 points.) Evaluate the following divergence of vector fields.

∇ · ρ̂, ∇ · φ̂, ∇ · ẑ, (2.141a)

∇ · (ρ2ρ̂), ∇ · (ρ2φ̂), ∇ · (ρ2ẑ), (2.141b)

∇ ·
(

ρ̂

ρ

)

, ∇ ·
(

φ̂

ρ

)

, ∇ ·
(

ẑ

ρ

)

. (2.141c)
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Draw the vector fields. Visualize and interpret the action of the divergence operator. Which of the above
are divergenceless.

4. (10 points.) Evaluate the following curl of vector fields.

∇× ρ̂, ∇× φ̂, ∇× ẑ, (2.142a)

∇× (ρ2ρ̂), ∇× (ρ2φ̂), ∇× (ρ2ẑ), (2.142b)

∇×
(

ρ̂

ρ

)

, ∇×
(

φ̂

ρ

)

, ∇×
(

ẑ

ρ

)

. (2.142c)

Draw the vector fields. Visualize and interpret the action of the curl operator. Which of the above are
curl free.

5. (20 points.) For studying a phenomenon on a plane it is convenient to breakup

∇ = ∇⊥ + ẑ
∂

∂z
, (2.143)

∇⊥ = ρ̂
∂

∂ρ
+ φ̂

1

ρ

∂

∂φ
. (2.144)

Verify the following identities:

∇⊥ ·
(

ρ̂

ρ

)

= 2πδ(2)(ρ), ∇⊥ ×
(

ρ̂

ρ

)

= 0, (2.145a)

∇⊥ ·
(

φ̂

ρ

)

= 0, ∇⊥ ×
(

φ̂

ρ

)

= ẑ 2πδ(2)(ρ). (2.145b)

6. (30 points.) The scale factors for cylindrical polar coordinates as

hρ = 1, hφ = ρ, hz = 1. (2.146)

The differential statement in rectangular coordinates is

dr = dx î+ dy ĵ+ dz k̂ (2.147)

and the corresponding differential statement in cylindrical polar coordinates is

dr = hρdρ ρ̂+ hφdφ φ̂+ hzdz ẑ. (2.148)

The gradient operator in rectangular coordinates is

∇ = î
∂

∂x
+ ĵ

∂

∂y
+ k̂

∂

∂z
(2.149)

and in cylindrical polar coordinates it is

∇ = ρ̂
1

hρ

∂

∂ρ
+ φ̂

1

hφ

∂

∂φ
+ ẑ

1

hz

∂

∂z
. (2.150)

Let a vector field in rectangular coordinates

E = îEx(x, y, z) + ĵEy(x, y, z) + k̂Ez(x, y, z) (2.151)

be expressed in cylindrical polar coordinates as

E = ρ̂Eρ(ρ, φ, z) + φ̂Eφ(ρ, φ, z) + ẑEz(ρ, φ, z). (2.152)
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Show that

∇ ·E =
1

hρhφhz

[

∂

∂ρ
(hφhzEρ) +

∂

∂φ
(hzhρEφ) +

∂

∂z
(hρhφEz)

]

. (2.153)

Show that

∇×E =
1

hρhφhz

∣

∣

∣

∣

∣

∣

hρρ̂ hφφ̂ hzẑ
∂
∂ρ

∂
∂φ

∂
∂z

hρEρ hφEφ hzEz

∣

∣

∣

∣

∣

∣

. (2.154)

Show that

∇2 =
1

hρhφhz

[

∂

∂ρ

hφhz
hρ

∂

∂ρ
+

∂

∂φ

hzhρ
hφ

∂

∂φ
+

∂

∂z

hρhφ
hz

∂

∂z

]

. (2.155)

7. (30 points.) The scale factors for cylindrical polar coordinates are

hρ = 1, hφ = ρ, hz = 1. (2.156)

The gradient operator in rectangular coordinates is

∇ = î
∂

∂x
+ ĵ

∂

∂y
+ k̂

∂

∂z
(2.157)

and in cylindrical polar coordinates it is

∇ = ρ̂
1

hρ

∂

∂ρ
+ φ̂

1

hφ

∂

∂φ
+ ẑ

1

hz

∂

∂z
. (2.158)

Let a vector field in rectangular coordinates

B = îEx(x, y, z) + ĵEy(x, y, z) + k̂Ez(x, y, z) (2.159)

be expressed in cylindrical polar coordinates as

B = ρ̂Eρ(ρ, φ, z) + φ̂Eφ(ρ, φ, z) + ẑEz(ρ, φ, z). (2.160)

The divergence operation is achieved using the relation

∇ ·B =
1

hρhφhz

[

∂

∂ρ
(hφhzEρ) +

∂

∂φ
(hzhρEφ) +

∂

∂z
(hρhφEz)

]

. (2.161)

and the curl operation is accomplished using

∇×B =
1

hρhφhz

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

hρρ̂ hφφ̂ hzẑ

∂

∂ρ

∂

∂φ

∂

∂z

hρEρ hφEφ hzEz

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (2.162)

Given

B = ẑ2 ln
2L

ρ
, (2.163)

where L is a constant. Evaluate

∇ ·B for ρ 6= 0 (2.164)

and

∇×B for ρ 6= 0. (2.165)
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2.5 Vector calculus in spherical polar coordinates

1. (10 points.) In spherical polar coordinates a point is coordinated by the intersection of family of spheres,
cones, and half-planes, given by

r =
√

x2 + y2 + z2, (2.166a)

θ = tan−1

√

x2 + y2

z2
, (2.166b)

φ = tan−1 y

x
, (2.166c)

respectively. Show that the gradient of these surfaces are given by

∇r = r̂, r̂ = sin θ cosφ î+ sin θ sinφ ĵ+ cos θ k̂, (2.167a)

∇θ = θ̂
1

r
, θ̂ = cos θ cosφ î + cos θ sinφ ĵ− sin θ k̂, (2.167b)

∇φ = φ̂
1

r sin θ
, φ̂ = − sinφ î + cosφ ĵ, (2.167c)

which are normal to the respective surfaces. Sketch the surfaces and the corresponding normal vectors.
This illustrates that ∇(surface) is a vector (field) normal to the surface.

2. (10 points.) Using the gradient operator in spherical polar coordinates,

∇ = r̂
∂

∂r
+ θ̂

1

r

∂

∂θ
+ φ̂

1

r sin θ

∂

∂φ
, (2.168)

evaluate the following

∂

∂r
r̂ = 0,

∂

∂r
θ̂ = 0,

∂

∂r
φ̂ = 0, (2.169a)

∂

∂θ
r̂ = θ̂,

∂

∂θ
θ̂ = −r̂,

∂

∂θ
φ̂ = 0, (2.169b)

∂

∂φ
r̂ = sin θ φ̂,

∂

∂φ
θ̂ = cos θ φ̂,

∂

∂φ
φ̂ = −ρ̂ = −(sin θ r̂+ cos θ θ̂). (2.169c)

Visualize the above variational statements graphically.

3. (10 points.) Evaluate the following divergence of vector fields.

∇ · r̂, ∇ · θ̂, ∇ · φ̂, (2.170a)

∇ · (r2 r̂), ∇ · (r2θ̂), ∇ · (r2φ̂), (2.170b)

∇ ·
(

r̂

r

)

, ∇ ·
(

θ̂

r

)

, ∇ ·
(

φ̂

r

)

. (2.170c)

Draw the vector fields. Visualize and interpret the action of the divergence operator. Which of the above
are divergenceless.

4. (10 points.) Evaluate the following curl of vector fields.

∇× r̂, ∇× θ̂, ∇× φ̂, (2.171a)

∇× (r2r̂), ∇× (r2θ̂), ∇× (r2φ̂), (2.171b)

∇×
(

r̂

r

)

, ∇×
(

θ̂

r

)

, ∇×
(

φ̂

r

)

. (2.171c)

Draw the vector fields. Visualize and interpret the action of the curl operator. Which of the above are
curl free.
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5. (30 points.) The scale factors for spherical polar coordinates as

hr = 1, hθ = r, hφ = r sin θ. (2.172)

The differential statement in rectangular coordinates is

dr = dx î+ dy ĵ+ dz k̂ (2.173)

and the corresponding differential statement in spherical polar coordinates is

dr = hrdr r̂+ hθdθ θ̂ + hφdφ φ̂. (2.174)

The gradient operator in rectangular coordinates is

∇ = î
∂

∂x
+ ĵ

∂

∂y
+ k̂

∂

∂z
(2.175)

and in spherical polar coordinates it is

∇ = r̂
1

hr

∂

∂r
+ θ̂

1

hθ

∂

∂θ
+ φ̂

1

hφ

∂

∂φ
. (2.176)

Let a vector field in rectangular coordinates

E = îEx(x, y, z) + ĵEy(x, y, z) + k̂Ez(x, y, z) (2.177)

be expressed in spherical polar coordinates as

E = r̂Er(r, θ, φ) + θ̂Eθ(r, θ, φ) + φ̂Eφ(r, θ, φ). (2.178)

Show that

∇ ·E =
1

hrhθhφ

[

∂

∂r
(hθhφEr) +

∂

∂θ
(hφhrEθ) +

∂

∂φ
(hrhθEφ)

]

. (2.179)

Show that

∇×E =
1

hrhθhφ

∣

∣

∣

∣

∣

∣

hrr̂ hθθ̂ hφφ̂
∂
∂r

∂
∂θ

∂
∂φ

hrEr hθEθ hφEφ

∣

∣

∣

∣

∣

∣

. (2.180)

Show that

∇2 =
1

hrhθhφ

[

∂

∂r

hθhφ
hr

∂

∂r
+

∂

∂θ

hφhr
hθ

∂

∂θ
+

∂

∂φ

hrhθ
hφ

∂

∂φ

]

. (2.181)

2.6 Vector calculus on a surface

1. (80 points.) Let us consider the following fields that exist only the surface of a sphere of radius a:

E = θ̂
δ(r − a)

2πr sin θ
, (2.182a)

B = φ̂
δ(r − a)

2πr sin θ
, (2.182b)

where (r, θ, φ) are spherical polar coordinates.

(a) Illustrate the vector field lines for E and B using a diagram.

(b) Show that

∇ · E = 0, θ 6= 0, π, ∇ ·B = 0, everywhere, (2.183a)

∇×E = 0, everywhere, ∇×B = 0, θ 6= 0, π. (2.183b)
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(c) Further, using Gauss’s theorem and Stoke’s theorem, show that

∫

V

d3r∇ · E =

{

+1, if V encloses θ = 0,

−1, if V encloses θ = π,
(2.184a)

∫

S

da ·∇×B =

{

+1, if S encloses θ = 0,

−1, if S encloses θ = π,
(2.184b)

(2.184c)

where V represents the volume of a cone with apex at the origin with infinitely small opening angle,
and S represents an infinitely small surface area on the sphere.

Thus, using the property of δ-function, deduce

∇ ·E =
[

δ(3)(r−N)− δ(3)(r− S)
]

, ∇ ·B = 0, (2.185a)

∇×E = 0, ∇×B = r̂
[

δ(3)(r−N)− δ(3)(r− S)
]

, (2.185b)

where N represents the North pole and S represents the South pole on the sphere. In particular,

δ(3)(r−N) = δ(r − a)
δ(θ)δ(φ)

r2 sin θ
, (2.186a)

δ(3)(r− S) = δ(r − a)
δ(θ − π)δ(φ)

r2 sin θ
. (2.186b)

Comments:

(a) Thus, electromagnetism on a sphere will require charge densities to have ρ(π − θ, φ+ π) = −ρ(θ, φ).
The suggestion seems to be that a positive charge on such a sphere will necessarily require there to
be a negative charge on the diametrically opposite side. However, we could imagine a positive and
negative charge that are not at diametrically opposite ends. Is this allowed?

(b) Think the development of spherical harmonics and the introduction of y± in Schwinger’s lectures.

(c) Observe that

∇⊥ ×
(

φ̂

r sin θ

)

= ∇×∇φ, (2.187)

which is naively expected to be zero.

2.7 Curvilinear coordinates (Outdated, written before Fall 2019)

1. (80 points.) A vector v in terms of the basis vectors ei has the form

v = eiv
i, (2.188)

and in terms of another set of basis vectors ēi has the form

v = ēiv̄
i. (2.189)

If the two sets of basis vectors are related by the linear transformation

ēi = eja
j
i, (2.190)

then show that
v̄i = bijv

j , (2.191)

where b = a−1.
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(a) Spherical polar coordinates are defined using the transformations

x = r sin θ cosφ, r =
√

x2 + y2 + z2, (2.192a)

y = r sin θ sinφ, θ = tan−1

√

x2 + y2

z2
, (2.192b)

z = r cos θ, φ = tan−1 y

x
. (2.192c)

Let us chose
e1 = î, e2 = ĵ, e3 = k̂, (2.193)

and
ē1 = r̂ = ∇r, ē2 = θ = ∇θ, ē3 = φ = ∇φ. (2.194)

Show that the linear transformation a connecting the two sets of basis vectors is

a =



















sin θ cosφ
cos θ cosφ

r
− sinφ

r sin θ

sin θ sinφ
cos θ sinφ

r

cosφ

r sin θ

cos θ − sin θ

r
0



















(2.195)

and

b = a−1 =









sin θ cosφ sin θ sinφ cos θ

r cos θ cosφ r cos θ sinφ −r sin θ
−r sin θ sinφ r sin θ cosφ 0









. (2.196)

(b) The differential of a position vector in these basis set takes the form

dx = îdx+ ĵdy + k̂dz = r̂dx̄+ θdȳ + φdz̄. (2.197)

Using Eq. (2.190) we learn that

θ =
θ̂

r
, φ =

φ̂

r sin θ
, (2.198)

where

r̂ = sin θ cosφ î+ sin θ sinφ ĵ+ cos θ k̂, (2.199a)

θ̂ = cos θ cosφ î+ cos θ sinφ ĵ− sin θ k̂, (2.199b)

φ̂ = − sinφ î+ cosφ ĵ, (2.199c)

Using Eq. (2.191) and replacing total differential for the sum of partial differentials we learn that

dx̄ = sin θ cosφdx+ sin θ sinφdy + cos θ dz = dr, (2.200a)

dȳ = r cos θ cosφdx+ r cos θ sinφdy − r sin θ dz = r2dθ, (2.200b)

dz̄ = −r sin θ sinφdx+ r sin θ cosφdy = r2 sin2 θdφ. (2.200c)

Thus, show that
dx = r̂ dr + θ̂ rdθ + φ̂ r sin θdφ. (2.201)

The scale factors are read out to be

hr = 1, hθ = r, hφ = r sin θ. (2.202)
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(c) The metric tensor is defined using the inner product,

gij = ei · ej, (2.203a)

ḡij = ēi · ēj. (2.203b)

Show that
gij = δij (2.204)

and

ḡij = gmna
m

ia
n
j =









1 0 0

0
1

r2
0

0 0
1

r2 sin2 θ









. (2.205)

Further, show that

dx · dx = dx2 + dy2 + dz2 = dr2 + r2dθ2 + r2 sin2 θdφ2. (2.206)

2. (80 points.) Cylindrical polar coordinates are defined by the transformations

x = ρ cosφ, ρ =
√

x2 + y2, (2.207a)

y = ρ sinφ, φ = tan−1 y

x
, (2.207b)

z = z, z = z. (2.207c)

Cylindrical polar coordinates form a orthogonal curvilinear coordinate system. List the three family of
surfaces represented by these equations. Also, list the corresponding lines of flow (normal to the these
surfaces) that serve as the coordinate lines.

(a) Using the differential statement

dx =
∂x

∂ρ
dρ+

∂x

∂φ
dφ+

∂x

∂z
dz (2.208)

and similar relations for dy and dz show that

dx2 + dy2 + dz2 = dρ2 + ρ2dφ2 + dz2. (2.209)

Thus read out the scale factors for cylindrical polar coordinates as

hρ = 1, hφ = ρ, hz = 1. (2.210)

Let

R =





cosφ − sinφ 0
sinφ cosφ 0
0 0 1



 . (2.211)

Show that




dx
dy
dz



 = R





hρdρ
hρdφ
hzdz



 . (2.212)

(b) Similarly, using the differential statement

∂

∂x
=
∂ρ

∂x

∂

∂ρ
+
∂φ

∂x

∂

∂φ
+
∂z

∂x

∂

∂z
(2.213)

and similar relations for ∂/∂y and ∂/∂z show that





∂
∂x
∂
∂y
∂
∂z



 = R







1
hρ

∂
∂ρ

1
hφ

∂
∂φ

1
hz

∂
∂z






. (2.214)



40 CHAPTER 2. VECTOR SPACE

(c) Using the construction of the unit vector

ρ̂ =
∇ρ

|∇ρ| (2.215)

and similar constructions for φ̂ and ẑ show that





î

ĵ

k̂



 = R





ρ̂

φ̂

ẑ



 . (2.216)

(d) Starting from the differential statement in rectangular coordinates

dr = dx î + dy ĵ+ dz k̂ (2.217)

derive the corresponding differential statement in cylindrical polar coordinates

dr = hρdρ ρ̂+ hφdφ φ̂+ hzdz ẑ. (2.218)

(e) Using the expression for the gradient operator in rectangular coordinates

∇ = î
∂

∂x
+ ĵ

∂

∂y
+ k̂

∂

∂z
(2.219)

derive the expression for the gradient operator in cylindrical polar coordinates

∇ = ρ̂
1

hρ

∂

∂ρ
+ φ̂

1

hφ

∂

∂φ
+ ẑ

1

hz

∂

∂z
. (2.220)

(f) Let a function f(x, y, z) in cylindrical polar coordinates be f̄(ρ, φ, z). That is, f(x, y, z) = f̄(ρ, φ, z).
Show that

df = dr ·∇f =

[

dx
∂

∂x
+ dy

∂

∂y
+ dz

∂

∂z

]

f(x, y, z). (2.221)

Show that

df =

[

dρ
∂

∂ρ
+ dφ

∂

∂φ
+ dz

∂

∂z

]

f̄(ρ, φ, z) = df̄ . (2.222)

This is the definition of a scalar field.

(g) Consider the vector field in rectangular coordinates

E = îEx(x, y, z) + ĵEy(x, y, z) + k̂Ez(x, y, z). (2.223)

A vector field, by definition, in cylindrical coordinates is given by




Ex(x, y, z)
Ey(x, y, z)
Ez(x, y, z)



 = R





Eρ(ρ, φ, z)
Eφ(ρ, φ, z)
Ez(ρ, φ, z)



 . (2.224)

Thus, show that
E = ρ̂Eρ(ρ, φ, z) + φ̂Eφ(ρ, φ, z) + ẑEz(ρ, φ, z). (2.225)

(h) Derive the following nine derivatives









∂ρ̂
∂ρ

∂φ̂
∂ρ

∂ẑ
∂ρ

∂ρ̂
∂φ

∂φ̂
∂φ

∂ẑ
∂φ

∂ρ̂
∂z

∂φ̂
∂z

∂ẑ
∂z









=





0 0 0

φ̂ −ρ̂ 0
0 0 0



 . (2.226)
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(i) Show that

∇ · E =
1

hρhφhz

[

∂

∂ρ
(hφhzEρ) +

∂

∂φ
(hzhρEφ) +

∂

∂z
(hρhφEz)

]

. (2.227)

(j) Show that

∇× E =
1

hρhφhz

∣

∣

∣

∣

∣

∣

hρρ̂ hφφ̂ hzẑ
∂
∂ρ

∂
∂φ

∂
∂z

hρEρ hφEφ hzEz

∣

∣

∣

∣

∣

∣

. (2.228)

(k) Show that

∇2 =
1

hρhφhz

[

∂

∂ρ

hφhz
hρ

∂

∂ρ
+

∂

∂φ

hzhρ
hφ

∂

∂φ
+

∂

∂z

hρhφ
hz

∂

∂z

]

. (2.229)
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Chapter 3

Functions of a complex variable

3.1 Complex number

3.1.1 Addition, subtraction, multiplication, division, and exponentiation

1. (10 points.) Find the real and imaginary part of

z =
(a+ ib)

(c+ id)
. (3.1)

Thus, express z in the form z = u+ iv. Assume a, b, c, and d are real.

2. (10 points.) Find the real and imaginary part of the following functions of the complex variable z = x+iy
in terms of x and y.

f =
1

z
, (3.2a)

f =
1

z2
. (3.2b)

3.1.2 Polar representation (Argand diagram): Addition, subtraction, multiplica-
tion, division, and exponentiation

1. (Polar representation.) Polar representation of a complex number

z = x+ iy (3.3)

in terms of the magnitude r and the phase φ,

x = r cosφ, r =
√

x2 + y2, (3.4a)

y = r sinφ, φ = tan−1
( y

x

)

, (3.4b)

is
z = r(cosφ+ i sinφ). (3.5)

Using the Euler formula
eiφ = cosφ+ i sinφ, (3.6)

which allows us to write a complex number in the form

z = reiφ. (3.7)

43
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2. (Euler formula.) Recall the power series representation of the exponential function, the cosine function,
and the sine function,

ex = 1 +
x

1!
+
x2

2!
+
x3

3!
+ . . . , (3.8a)

cosx = 1− x2

2!
+
x4

4!
− x6

6!
+ . . . , (3.8b)

sinx = x− x3

3!
+
x5

5!
− x7

7!
+ . . . , (3.8c)

which is typically introduced for real x. However, the power series representation is valid for complex
variables too. For the phase of a complex number φ, which is real, using the series representation, verify
that

eiφ = cosφ+ i sinφ, (3.9)

This is called the Euler formula.

3. (Example.) For two complex numbers,

z1 = r1(cosφ1 + i sinφ1) = r1e
iφ1 , (3.10a)

z2 = r2(cosφ2 + i sinφ2) = r2e
iφ2 , (3.10b)

verify that

z1z2 = r1r2

[

cos(φ1 + φ2) + i sin(φ1 + φ2)
]

= r1r2e
i(φ1+φ2). (3.11)

4. (DeMoivre’s theorem.) Show using trignometric identities, (without relying on the Euler formula,)
that

(cosφ+ i sinφ)n = cosnφ+ i sinnφ. (3.12)

This is called the DeMoivre theorem. The statement of DeMoivre’s theorem is immediate using the Euler
formula.

5. (Example.) Find the real and imaginary part of the following functions of the complex variable z = reiφ

in terms of the magnitude r and the phase φ. Thus, verify that

z3 = r3 cos 3φ+ ir3 sin 3φ, (3.13a)

1

z3
=

cos 3φ

r3
− i

sin 3φ

r3
, (3.13b)

3
√
z = r

1

3 cos

(

φ

3

)

+ ir
1

3 sin

(

φ

3

)

. (3.13c)

Actually, the cube root 3
√
z leads to three independent solutions, the above being one of the three.

6. (10 points.) For a given complex number z, say

z =
√
2 ei

π
3 , (3.14)

evaluate
z2, z3, z4, z5, z6, z7, z8, z9, z10. (3.15)

Mark all of them on the complex plane. Decipher the pattern.

7. (20 points.) Verify that √
−2

√
−3 = −

√
6. (3.16)

However, it is often tempting to conclude
√
−2

√
−3 =

√

(−2)(−3) =
√
6. (3.17)
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The ambiguity in the interpretation of
√
−2 and

√
−3 is (partly) removed by writing,

√
−2 =

(

2eiπ
)

1

2 =
√
2ei

π
2 , (3.18a)

√
−3 =

(

3eiπ
)

1

2 =
√
3ei

π
2 . (3.18b)

This only partly removes the ambiguity because
√
−2 and

√
−3 have two independent roots each and

Eqs. (3.18) only identifies one of the roots, the principal root, for each. Using Eqs. (3.18) verify the cor-
rectness of the statement in Eq. (3.16) again. The above ambiguity in the interpretation and the related
confusions plagued the development of ideas related to complex numbers until the geometric visualiza-
tion of a complex number using Argand diagram (magnitude and direction in polar representation) was
discovered by Wessel in 1797 and popularized by Argand in 1806. Without this geometric interpretation
even Euler fell into the trap of concluding

√
−2

√
−3 =

√
6. So, is the statement in Eq. (3.17) erroneous?

No. To this end, let us remove the ambiguity completely by recognizing the multiplicities in the roots,

√
−2 =

(

2eiπ
)

1

2 =
√
2ei

π
2 (1, ω), ω = eiπ, (3.19a)

√
−3 =

(

3eiπ
)

1

2 =
√
3ei

π
2 (1, ω), ω = eiπ, (3.19b)

where comma-separated quantities contribute to multiplicities in roots. Muliplication of the two roots of√
−2 and two roots of

√
−3 leads to four possibilities,

(1, ω)× (1, ω) → (1, ω, ω, ω2). (3.20)

Using ω2 = 1, only two out of four possibilities are independent. Thus, we have

√
−2

√
−3 =

√
2
√
3(1, ω), ω = eiπ. (3.21)

In summary, both the statements in Eqs. (3.16) and (3.17) are correct.

8. (20 points.) Evaluate
(

1

2
+ i

√
3

2

)23

. (3.22)

Mark the resulting number on the complex plane.

9. (20 points.) Prove the identity

tan−1

(

1

2

)

+ tan−1

(

1

3

)

=
π

4
. (3.23)

Use the identity
(2 + i)(3 + i) = 5 + i5. (3.24)

Similarly, find y/x in the relation

tan−1

(

3

2

)

+ tan−1

(

1

5

)

= tan−1
( y

x

)

. (3.25)

Solution: y/x = 17/7.

10. (20 points.) Find the real and imaginary part of the function

f = cos z =
eiz + e−iz

2
(3.26)

in terms of x and y, where z = x+ iy is a complex variable.
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11. (Example.) Find the real and imaginary part of the following functions. Thus, verify that

eiz = e−y(cosx+ i sinx), (3.27a)

ln z = ln r + i(φ+ 2πn), (3.27b)

where n is an arbitrary integer.

12. (20 points.) Find the real and imaginary part of the function

f =
√
z. (3.28)

13. (10 points.) (Refer Arfken) The complex quantities

a = u+ iv, (3.29a)

b = x+ iy (3.29b)

may also be represented as two-dimensional vectors

a = x̂u+ ŷ v, (3.30a)

b = x̂x+ ŷ y. (3.30b)

Show that
(a∗)b = a · b+ iẑ · a× b. (3.31)

14. (20 points.) The close connection between the geometry of a complex number

z = x+ iy (3.32)

and a two-dimensional vector
r = x î+ y ĵ (3.33)

is intriguing. They have the same rules for addition and subtraction, but differ in their rules for multipli-
cation. Show that

z∗1z2 = (r1 · r2) + i(r1 × r2) · k̂. (3.34)

In the quest for a number system that corresponds to a three dimensional vector, Hamilton in 1843
invented the quaternions. A quaternion P can be expressed in terms of Pauli matrices as

P = a0 − ia · σ. (3.35)

Recall that the Pauli matrices are completely characterized by the identity

(a · σ)(b · σ) = (a · b) + i(a× b) · σ. (3.36)

(a) Show that the (Hamilton) product of two quaternions,

P = a0 − ia · σ, (3.37a)

Q = b0 − ib · σ, (3.37b)

is given by
PQ = (a0b0 − a · b)− i(a0b+ b0a+ a× b) · σ. (3.38)

(b) Verify that the Hamilton product is non-commutative. Determine
[

P,Q
]

.
Solution:

[

P,Q
]

= −2i(a× b) · σ. (3.39)
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15. (20 points.) Given

z1 = eiπ
5

4 , (3.40)

z2 = eiπ
3

2 . (3.41)

Show that

z1z2 = eiπ
3

4 . (3.42)

Mark z1, z2, and z1z2, on the complex plane.

16. (20 points.) Given

z1 = 3i− 2, (3.43)

z2 = 3 + 2i. (3.44)

Evaluate
z1
z2
. (3.45)

Mark z1, z2, and z1/z2, on the complex plane. Decipher the pattern in this construction and find this
class of numbers. Solution: z2 = reiθ and z1 = iz2.

3.1.3 Cardano formula

1. (20 points.) (NOT COMPLETE) The roots to the cubic equation

x3 + px+ q = 0 (3.46)

can be found using the Cardano formula

x =

(

− q
2
+

√

q2

4
+
p3

27

)
1

3

+

(

− q
2
−
√

q2

4
+
p3

27

)
1

3

. (3.47)

For p = −15 and q = −4, verify by substitution that each of

4, −2±
√
3. (3.48)

are roots. Using Cardano formula we have

x = (2 + i11)
1

3 + (2 − i11)
1

3 . (3.49)

The three cube roots for the two terms are

(2 + i11)
1

3 = z(1, ω, ω∗), z = 2 + i, (3.50)

(2− i11)
1

3 = z∗(1, ω∗, ω), (3.51)

This has the form

x = z(1, ω, ω∗) + z∗(1, ω∗, ω), (3.52)

and allows 9 combinations,
z + z∗ z + z∗ω∗ z + z∗ω

[

z + z∗ω∗]∗ zω + (zω)∗ zω + z∗ω
[

z + z∗ω
]∗ [

zω + z∗ω
]∗
zω∗ + (zω∗)∗

(3.53)

The diagonal combinations are real.
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3.1.4 Roots of unity

1. (20 points.) Find the two roots that satisfy the equation

z2 = i. (3.54)

Mark the points corresponding to the two roots on the complex plane.
Solution: The two roots are

ei
π
4 (1, ω), ω = eiπ = −1. (3.55)

2. (20 points.) Find the two roots that satisfy the equation

z2 = −i. (3.56)

Mark the points corresponding to the two roots on the complex plane.
Solution: The two roots are

ei
3π
4 (1, ω), ω = eiπ = −1, (3.57)

or
e−iπ

4 (1, ω), ω = eiπ = −1, (3.58)

3. (20 points.) Find the cube roots of unity by solving the equation

z3 = 1. (3.59)

Mark the points corresponding to the three roots on the complex plane.

4. (20 points.) Find the three roots that satisfy the equation

z3 = i. (3.60)

Mark the points corresponding to the three roots on the complex plane.
Solution: The three roots are

ei
π
6 (1, ω, ω2), ω = ei

2π
3 . (3.61)

5. (20 points.) Find the four roots that satisfy the equation

z4 = −1. (3.62)

Mark the points corresponding to the three roots on the complex plane.
Solution: The four roots are

ei
π
4 (1, ω, ω2, ω3), ω = ei

π
2 . (3.63)

6. (30 points.) Find the fifth roots of unity by solving the equation

z5 = 1. (3.64)

Mark the points corresponding to the five roots on the complex plane. Find the five roots of the equation

z5 = −1. (3.65)

Mark the roots on the complex plane. Next, find the roots of the equation

z5 = i (3.66)

and mark the roots on the complex plane. Repeat the exercise for z5 = −i. How do these roots match
with the fifth roots of unity? Recognize the pattern.
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7. (20 points.) Find the three roots of −1 by solving the equation

z3 = −1. (3.67)

Mark the the points corresponding to the three roots on the complex plane.

8. (20 points.) Find the cube roots of unity by solving the equation

z3 = 1, (3.68)

where the exponent of z is a positive integer.

(a) Find the roots of the equation

z
3

2 = 1, (3.69)

where the exponent of z is a rational number.

(b) Find the roots of the equation

zπ = 1, (3.70)

where the exponent of z is an irrational number.

9. (20 points.) Find all z that satisfies the equation

ez = eiz. (3.71)

Show them on a complex plane.

10. (20 points.) Find all z that satisfies the following and show them on a complex plane.

ez = eia, (3.72a)

ez = ea, (3.72b)

ez = eiz , (3.72c)

ei2πz = 1, (3.72d)

e2πz = 1, (3.72e)

ei2πz
2

= 1, (3.72f)

ei2πz
2

= ei4πz . (3.72g)

Solution: a) z = ia + i2πn, b) z = a + i2πn, c) z = (−1 + i)πn, d) z = n, e) z = in, f) z =
√
n, g)

z = 1±
√
1 + n.

11. (20 points.) Locate z = πi on the complex plane.

12. (20 points.) Locate z = ii on the complex plane.

13. (20 points.) Show that the product of cube roots of unity is equal to −1, if n = 2, and equal to 1, if
n = 2, 3, 4, . . ..

14. (20 points.) (INCOMLETE) Show that

z
1

n1

1 z
1

n2

2 = r
1

n1

1 r
1

n2

2 e
i
(

θ1
n1

+
θ2
n2

)

ei
2π

n1n2
(k1n2+k2n1), (3.73)

where k1 = 0, 1, 2, . . . , n1 − 1 and k2 = 0, 1, 2, . . . , n2 − 1. The multiplicities are determined by

k = (k1n2 + k2n1) mod n1n2. (3.74)
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n1 n2 k
2 3 0,1,2,. . . ,5

2× 2 3 0,1,2,. . . ,11
2× 2 3× 2 0,2,4,. . . ,22
3× 2 3× 2 0,6,12,. . . ,30
2× 2 3× 3 0,1,2,. . . ,35

Recognize the generic pattern.

3.1.5 Hyperbolic functions

1. (100 points.) Hyperbolic cosine function and sine function are defined using the exponential function.
We have

coshx =
ex + e−x

2
, (3.75a)

sinhx =
ex − e−x

2
. (3.75b)

Here, and in the following, assume x and y to be real. Recall that the corresponding trigonometric
functions are defined in terms of the exponential function as

cosx =
eix + e−ix

2
, (3.76a)

sinx =
eix − e−ix

2i
. (3.76b)

Hyperbolic functions extend the domain of the corresponding trigonometric functions to the complex
plane.

(a) Show that

coshx = cos(ix), (3.77a)

sinhx = −i sin(ix). (3.77b)

(b) Plot coshx and sinhx as functions of x.

(c) Using Eqs. (3.75) derive the identity

cosh2 x− sinh2 x = 1. (3.78)

Derive the identities for the sum of arguments of hyperbolic functions,

cosh(x± y) = coshx cosh y ± sinhx sinh y, (3.79a)

sinh(x± y) = sinhx cosh y ± coshx sinh y. (3.79b)

Derive the derivative operations on hyperbolic functions,

d

dx
coshx = sinhx, (3.80a)

d

dx
sinhx = coshx, (3.80b)

and the integral operations,
∫

dx coshx = sinhx, (3.81a)

∫

dx sinhx = coshx. (3.81b)
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(d) To find the inverse hyperbolic function of sine let us define

y = sinh−1 x. (3.82)

Then, we have

x = sinh y =
ey − e−y

2
, (3.83)

which can be rewritten as a quadratic equation in ey,

(ey)2 − 2x(ey)− 1 = 0, (3.84)

with solutions
ey = x±

√

x2 + 1. (3.85)

Presuming y to be real argue that only one of the roots is consistent with ey > 0. Taking logarithm
we have

sinh−1 x = ln(x+
√

x2 + 1). (3.86)

Similarly, derive the expression

cosh−1 x = ln(x+
√

x2 − 1). (3.87)

2. (20 points.) Hyperbolic cosine and sine are defined in terms of the exponential function,

coshx =
ex + e−x

2
, (3.88a)

sinhx =
ex − e−x

2
. (3.88b)

Using the above prove the identity

cosh(x + y) = coshx cosh y + sinhx sinh y. (3.89)

3.2 Cauchy-Riemann conditions

1. (20 points.) Recall that analytic functions satisfy the Cauchy-Riemann conditions. That is, the real and
imaginary parts of an analytic function

f(x+ iy) = u(x, y) + iv(x, y) (3.90)

satisfy

∂u

∂x
=
∂v

∂y
, (3.91a)

∂v

∂x
= −∂u

∂y
. (3.91b)

In terms of the variables z and z∗, defined using

z = x+ iy, x =
z + z∗

2
, (3.92a)

z∗ = x− iy, y =
z − z∗

2i
, (3.92b)

we have

∂

∂x
=

∂

∂z
+

∂

∂z∗
,

∂

∂z
=

1

2

∂

∂x
− i

2

∂

∂y
, (3.93a)

∂

∂y
= i

∂

∂z
− i

∂

∂z∗
,

∂

∂z∗
=

1

2

∂

∂x
+
i

2

∂

∂y
. (3.93b)
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(a) Show that the conditions in Eqs. (3.91) imply

∂f

∂z∗
= − ∂

∂z
(u− iv), (3.94a)

∂f

∂z∗
= +

∂

∂z
(u− iv), (3.94b)

respectively. Thus, show that the conditions in Eqs. (3.91) imply

∂f

∂z∗
= 0, (3.95)

which is insightful.

(b) Is the inverse true? That is, does the condition in Eq. (3.95) imply the conditions in Eqs. (3.91). To
this end, begin from Eq. (3.95) and immediately conclude

∂u

∂z∗
+ i

∂v

∂z∗
= 0. (3.96)

Then, proceed to derive
(

∂u

∂x
− ∂v

∂y

)

+ i

(

∂u

∂y
+
∂v

∂x

)

= 0, (3.97)

which implies the conditions in Eqs. (3.91).

2. (20 points.) Show that the sums, products, and composites of analytic functions are also analytic.

3. (20 points.) Show that if f(z) is an analytic function then the derivative df/dz satisfies the Cauchy-
Riemann equations.

4. (20 points.) Analytic functions satisfy the Cauchy-Riemann equations. That is, the real and imaginary
parts of an analytic function

f(x+ iy) = u(x, y) + iv(x, y) (3.98)

satisfy

∂u

∂x
=
∂v

∂y
, (3.99a)

∂v

∂x
= −∂u

∂y
. (3.99b)

Given f(z) and g(z) are analytic functions in a region, then show that f(g(z)) satisfies the Cauchy-Riemann
equations there.

Hint: Let g = u+ iv and f = U + iV . Thus, we can write

f(g(z)) = U(u(x, y), v(x, y)) + iV (u(x, y), v(x, y)). (3.100)

5. (20 points.) Analytic functions satisfy the Cauchy-Riemann equations. That is, the real and imaginary
parts of an analytic function

f(x+ iy) = u(x, y) + iv(x, y) (3.101)

satisfy

∂u

∂x
=
∂v

∂y
, (3.102a)

∂v

∂x
= −∂u

∂y
. (3.102b)
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Given f(z) is an analytic function in a region, then show that f−1(z) satisfies the Cauchy-Riemann
equations there.

Hint: Using
f−1(f(z)) = z (3.103)

we have

x = x(u(x, y), v(x, y)), (3.104a)

y = y(u(x, y), v(x, y)). (3.104b)

Thus, we have

1 =
∂x

∂x
=
∂x

∂u

∂u

∂x
+
∂x

∂v

∂v

∂x
, (3.105a)

0 =
∂x

∂y
=
∂x

∂u

∂u

∂y
+
∂x

∂v

∂v

∂y
, (3.105b)

0 =
∂y

∂x
=
∂y

∂u

∂u

∂x
+
∂y

∂v

∂v

∂x
, (3.105c)

1 =
∂y

∂y
=
∂y

∂u

∂u

∂y
+
∂y

∂v

∂v

∂y
, (3.105d)

which are contained in








∂x

∂u

∂x

∂v

∂y

∂u

∂y

∂v

















∂u

∂x

∂u

∂y

∂v

∂x

∂v

∂y









=

(

1 0
0 1

)

. (3.106)

Taking the inverse we obtain the relation









∂x

∂u

∂x

∂v

∂y

∂u

∂y

∂v









=









∂v

∂y
−∂u
∂y

−∂v
∂x

∂u

∂x









1
[

∂u

∂x

∂v

∂y
− ∂u

∂y

∂v

∂x

] . (3.107)

Since u(x, y) and v(x, y) satisfy Cauchy-Riemann conditions the matrix relation takes the form









∂x

∂u

∂x

∂v

∂y

∂u

∂y

∂v









=









∂u

∂x
−∂u
∂y

∂u

∂y

∂u

∂x









1
[

(

∂u

∂x

)2

+

(

∂u

∂y

)2
] . (3.108)

Thus, conclude

∂x

∂u
=
∂y

∂v
, (3.109a)

∂x

∂v
= −∂y

∂u
. (3.109b)

6. (20 points.) Express the Cauchy-Riemann equations in polar form:

∂u

∂r
=

1

r

∂v

∂θ
, (3.110a)

∂v

∂r
= −1

r

∂u

∂θ
. (3.110b)
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7. (20 points.) Investigate if the function

f =
z

z∗
(3.111)

is locally isotropic around the point z = 0. In particular, inquire the following:

lim
x→0

lim
y→0

f, (3.112a)

lim
y→0

lim
x→0

f. (3.112b)

Are they equal? Interpret the direction of approach in each of the above limits.

8. (20 points.) Let

u(x, y) =
x3 − y3

x2 + y2
. (3.113)

Then evaluate the following:

lim
x→0

lim
y→0

∂u

∂x
, (3.114a)

lim
y→0

lim
x→0

∂u

∂x
. (3.114b)

Are they equal?

9. (20 points.) Verify that a real function f having dependence on the spatial variables (x, y, z) of the form
f(ax+ by + cz) satisfies the Laplace equation in three dimensions

∇2f = 0 (3.115)

provided

a2 + b2 + c2 = 0. (3.116)

Thus, deduce that f(x+ iy) satisfies the Laplace equation in two dimensions, because 12 + i2 = 0.

10. (20 points.) Given an analytic function

f(z) = u(x, y) + iv(x, y) (3.117)

on a complex plane, z = x+ iy, we can imagine the two functions u(x, y) and v(x, y) to exist on the two-
dimensional plane spanned by the real variables x and y. (Recall that even though addition and subtraction
are identical in these spaces, the algebra of multiplication is different. Division is not introduced in a vector
space.) In terms of the gradient operator in the two-dimensional vector space,

∇ = î
∂

∂x
+ ĵ

∂

∂y
, (3.118)

show that Cauchy-Riemann equations for u(x, y) and v(x, y) imply

(∇u) · (∇v) = 0. (3.119)

Thus, interpret that u’s and v’s are orthogonal family of surfaces and thus serves as a suitable chart for
coordinatization. Mathematica allows visualization of these surfaces using the command ComplexCon-
tourPlot.

f[z_] = z^3;

ComplexContourPlot[ReIm[f[z]], {z,-3-3 I,3+3 I}]
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The above two-line code in Mathematica plots the real and imaginary surfaces associated with the analytic
function f(z) = z3 between the coordinate points (−3,−3) and (3, 3).

11. (20 points.) We shall show that transformations governing an analytic function

f(z) = f(x+ iy) = u(x, y) + iv(x, y) (3.120)

are conformal. That is, they preserve angles. Using the differentials at z

dz1 = |dz1|eiθ1 , dz2 = |dz2|eiθ2 , (3.121)

construct the area element

dz∗1dz2 = |dz1||dz2|ei(θ2−θ1). (3.122)

The transformed quantities are

df1 =
df

dz1
dz1, df2 =

df

dz2
dz2. (3.123)

Using the definition of an analytic function we have

df

dz1
=

df

dz2
=
df

dz
(3.124)

that depends only on z. Let
df

dz
=

∣

∣

∣

∣

df

dz

∣

∣

∣

∣

eiα. (3.125)

Thus show that

df∗
1 df2 =

∣

∣

∣

∣

df

dz

∣

∣

∣

∣

2

|dz1||dz2|ei(θ2−θ1). (3.126)

Thus conclude that the shape df∗
1 df2 and dz∗1dz2 preserve angles.

3.3 Analytic function

1. (30 points.) Analytic functions are significantly constrained, in that they have to satisfy the Cauchy-
Riemann conditions. These conditions are necessary (but not sufficient) for a function of a complex variable
to be analytic (differentiable). Check if the following functions satisfy the Cauchy-Riemann conditions. If
f(z) is analytic for all z, then report the derivative as a function of z. Otherwise, determine the points,
or regions, in the z plane where the function is not analytic.

f(z) = z3, (3.127a)

f(z) = |z|2, (3.127b)

f(z) = eiz , (3.127c)

f(z) = ln z. (3.127d)

Use ComplexContourPlot in Mathematica to visualize these functions.

2. (20 points.) Check if the function

f(z) = zz∗ (3.128)

satisfies the Cauchy-Riemann conditions.

(a) Verify that all the points for f(z) lies on the non-negative real line.
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(b) Verify that as you approach the point z = r ≥ 0 on the non-negative real line, along a circle of fixed
radius r from the first quadrant, we have

lim
∆z→0

∆f

∆z
= lim

θ→0

f(reiθ)− f(r)

reiθ − r
= 0. (3.129)

Then verify that as you approach the point z = r along the real axis we have

lim
∆z→0

∆f

∆z
= lim

∆x→0

(x+∆x)2 + y2 − (x2 + y2)

∆x
= 2x. (3.130)

(c) Thus, conclude that the derivative is not isotropic for any z.

(d) Use ComplexContourPlot in Mathematica to visualize these functions. Note that this is not an
analytic function.

3. (20 points.) Check if the function
f(z) = ez+iz (3.131)

satisfies the Cauchy-Riemann conditions.

4. (20 points.) Check if the function
f(z) = ez + eiz (3.132)

satisfies the Cauchy-Riemann conditions. If f(z) is analytic for all z, then report the derivative as a
function of z. Otherwise, determine the points, or regions, in the z plane where the function is not
analytic.

5. (20 points.) Check if the function

f(z) =
1

z
(3.133)

satisfies the Cauchy-Riemann conditions.

(a) Verify that the Cauchy-Riemann conditions for this case are not well defined at z = 0, but are fine
for z 6= 0.

(b) Verify that
df

dz
= − 1

z2
, z 6= 0. (3.134)

(c) Determine the limiting value of the derivative as you approach z = 0 along the positive real line,
and, then, when you approach along the negative real line. Repeat the analysis along the imaginary
line. Repeat the analysis along the line x = y. Are these limits identical?

(d) If these limits are not identical conclude that the derivative is not isotropic at z = 0. Then, the
function is not analytic at z = 0.

6. (20 points.) Check if the function

f(z) = ln
(z − 1)

(z + 1)
(3.135)

satisfies the Cauchy-Riemann conditions. Investigate the geometric properties of this function using
ComplexContourPlot in Mathematica.

7. (20 points.) Plot

f(x) = e−
1

x , (3.136)

given x is positive and real. Also, imagine the plot for f(iy) = e−
1

iy . Let z be complex. Check if the
function

f(z) = e−
1

z (3.137)

satisfies the Cauchy-Riemann conditions.
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(a) Verify that the Cauchy-Riemann conditions for this case are not well defined at z = 0, but are fine
for z 6= 0.

(b) Verify that

df

dz
=
e−

1

z

z2
, z 6= 0. (3.138)

(c) Determine the limiting value of the derivative as you approach z = 0 along the positive real line,
and, then, when you approach along the negative real line. Repeat the analysis along the imaginary
line. Repeat the analysis along the line x = y. Are these limits identical?

(d) If these limits are not identical conclude that the derivative is not isotropic at z = 0. Then, the
function is not analytic at z = 0.

8. (20 points.) Plot

f(x) = e
− 1

1−x2 , (3.139)

given x is real. Let z be complex. Check if the function

f(z) = e
− 1

1−z2 (3.140)

satisfies the Cauchy-Riemann conditions. In particular, investigate when z = 0 and z 6= 0.
Hint: Inquire whether 1/(1− z2) is analytic.

9. (20 points.) (Under construction.
) Plot

f(x) =
sinx

x
(3.141)

given x is real. Let z be complex. Is the complex function

f(z) =
sin z

z
(3.142)

analytic at z = 0? Show that
df

dz
=
z cos z − sin z

z2
. (3.143)

Query: Doesn’t df/dz approach zero from all directions? It seems to. For example,

lim
x→0

lim
y→0

z cos z − sin z

z2
= lim

y→0
lim
x→0

z cos z − sin z

z2
. (3.144)

However, literature seems to suggest that sin z/z is not analytic at z = 0. These discussions should be
verified with the statement of Morera’s theorem in the integral of sin z/z being π.

3.4 Conjugate functions: Electrostatics in two dimensions

1. (20 points.) Given

f = u+ iv, (3.145)

where

u(x, y) = x2 − y2 (3.146)

and the function v(x, y) is not known. If the function f is an analytic function, then v satisfies the
Cauchy-Riemann conditions. Determine v, assuming f is analytic.
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2. (20 points.) Show that the complex function

f = zz∗ (3.147)

is not an analytic function. Express the function f in the form f = u + iv and find that u = (x2 + y2)
and v = 0. Show that the Cauchy-Riemann conditions are not satisfied in this case. Could we modify
the function v, keeping u the same, such that the new function f is analytic? That is, investigate if there
exists a function v that satisfies the Cauchy-Riemann conditions with u = (x2 + y2)? If yes, find a v and
interpret? If no, what is the interpretation?

3. (20 points.) Let

f(z) = z3, (3.148)

so that

u(x, y) + iv(x, y) = r3(cos 3θ + sin 3θ). (3.149)

(a) Verify that this function satisfies the Cauchy-Riemann conditions.

(b) Show that u and v are harmonic functions. That is, they satisfy the Laplacian. Further, show that

(∇u) · (∇v) = 0. (3.150)

Thus, the curves represented by u and v are orthogonal at every point.

(c) Since u is a harmonic function it represents equipotential curves. Plot the equipotentials

r =
[ u

cos 3θ

]
1

3

(3.151)

for u = −10,−1,−0.1, 0, 0.1, 1, 10. In Mathematica this can be achieved using the command

PolarPlot[{r[-10],...,r[10]},{th,0,2 Pi}],

where r[u] a function of u and th needs to be defined ahead.

(d) Determine the electric field associated to these equipotentials using

E = −∇u. (3.152)

This is easily achieved using
∂

∂x
=
∂r

∂x

∂

∂r
+
∂θ

∂x

∂

∂θ
(3.153)

and similarly for derivatives with respect to y. Recall

∂r

∂x
=
x

r
,

∂r

∂y
=
y

r
,

∂θ

∂x
= − sin θ

r
,

∂θ

∂y
=

cos θ

r
. (3.154)

Show that

E = −î 3r2 cos 2θ + ĵ 3r2 sin 2θ. (3.155)

(e) The curves representing the field lines are obtained by requiring the tangent lines for these curves to

have the same slope as the electric field, E = (constant) ds, where ds = îdx+ ĵdy + k̂dz, such that

dx

Ex

=
dy

Ey

. (3.156)

Rewrite this equation as

Eydx− Exdy = 0. (3.157)
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Comparing this equation with
∂s

∂x
dx+

∂s

∂y
dy = 0 (3.158)

identify the equations satisfied by the curves s(x, y), representing the field lines associated to the
equipotentials u, as

∂s

∂x
= 6xy,

∂s

∂y
= 3(x2 − y2). (3.159)

Solve these equations to determine the equations for the field lines to be

s(x, y) = 3x2y − y3 = r3 sin 3θ (3.160)

up to a constant. The field lines s are indeed v. Plot the field lines

r =
[ v

sin 3θ

]
1

3

(3.161)

for v = −10,−1,−0.1, 0, 0.1, 1, 10.

(f) Plot the equipotentials in red and field lines in blue in the same plot. Here is a simple code for it in
Mathematica

n = 3;

f[u_] = (u/Cos[n t])^(1/n);

g[u_] = (u/Sin[n t])^(1/n);

PolarPlot[

{f[-10], f[-1], f[-0.1], f[0], f[0.1], f[1], f[10],

g[-10], g[-1], g[-0.1], g[0], g[0.1], g[1], g[10]},

{t, -Pi, Pi},

PlotStyle -> {Red, Red, Red, Red, Red, Red, Red,

Blue, Blue, Blue, Blue, Blue, Blue, Blue},

PlotRange -> {-4, 4}]

which generates the plots in Fig. 3.1.

4. (20 points.) Let
f(z) = −λ ln z, (3.162)

λ being positive real, so that
u(x, y) + iv(x, y) = −λ(ln r + iθ). (3.163)

If u’s are interpreted as equipotential surfaces, this represents the electrostatic configuration consisting of
a line charge of strength λ along the line z = 0. Determine the electrostatic configuration corresponding
to the complex function

f(z) = −λ ln z − z0
z + z0

. (3.164)

(a) In particular, show that
f(z) = −λ ln(z − z0) + λ ln(z + z0). (3.165)

Thus, interpret the electrostatic configuration to consist of a line dipole. That is, it consists of a line
charge of strength λ along the line z = z0, and another line charge of strength −λ along the line
z = −z0.

(b) Evaluate f(z) in the limit 2z0 → 0, λ → ∞, such that the product 2z0λ = p is kept fixed. In
particular, show that

f(z) → p

z
. (3.166)

Interpret this configuration to be that of a line point-dipole of strength p (with direction given by the
position of the complex number p in the complex plane) along the line passing through the origin.



60 CHAPTER 3. FUNCTIONS OF A COMPLEX VARIABLE
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Figure 3.1: Equipotentials and field lines represented by the analytic function f(z) = z3.
.

3.5 Cauchy theorem

3.5.1 Cauchy integral formula

For a complex function that is analytic everywhere inside a contour c we have

1

2πi

∮

c

dz
f(z)

(z − a)
=

{

f(a), if a is inside the region enclosed by contour c,

0, otherwise.
(3.167)

1. (10 points.) Evaluate the following contour integrals. In the following the contour c is a unit circle going
counterclockwise with center at z = a.

I(a) =
1

2πi

∮

c

dz
(z5 + 1)

(z − a)
, (3.168a)

I(a) =
1

2πi

∮

c

dz
eiz

(z − a)
. (3.168b)

2. (20 points.) Evaluate the contour integral

I =
1

2πi

∮

c

dz
eiz

(z2 − a2)
, (3.169)

where the contour c is a unit circle going counterclockwise with center at the origin. Inquire the cases
when |a| > 1 and |a| < 1.

3.5.2 Cauchy differentiation formula

1

2πi

∮

c

dz
f(z)

(z − a)n+1
=

1

n!

{

dnf(z)

dzn

}

z=a

, n = 0, 1, 2, . . . . (3.170)
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Since f(z) is analytic there exists a power series expansion of f(z) about z = a. The, use the Cauchy integral
formula.

3.6 Laurent series

Laurent series for a function f(z), about z = z0, involves the expansion

f(z) = . . .+
a−2

(z − z0)2
+

a−1

(z − z0)
+ a0 + a1(z − z0) + a2(z − z0)

2 + . . . , (3.171)

where the coefficients an are given using the contour integrals

an =
1

2πi

∮

c

dz
f(z)

(z − z0)n+1
(3.172)

with the contour c encircling z0.

1. (20 points.) The complex function

f(z) =
1

(z + 2)(z − 1)
(3.173)

has the Laurent series

f(z) = . . .+
a−2

(z + 2)2
+

a−1

(z + 2)
+ a0 + a1(z + 2) + a2(z + 2)2 + . . . , (3.174)

about z = −2, where

an =
1

2πi

∮

c

dz
1

(z + 2)n+1

1

(z + 2)(z − 1)
. (3.175)

Choose the contour c to be a circle centered at z = −2 with radius less than 3 so that it does not encircle
z = 1. Show that

an =











0, if n = −2,−3,−4, . . .,

1

(n+ 1)!

{

dn+1f(z)

dzn+1

}

z=−2

, if n = −1, 0, 1, 2, . . . .
(3.176)

In particular, show that

an =







0, if n = −2,−3,−4, . . .,

− 1

3n+2
, if n = −1, 0, 1, 2, . . . .

(3.177)

2. (20 points.) The complex function

f(z) =
1

(z + 2)(z − 1)
(3.178)

has the Laurent series

f(z) = . . .+
a−2

(z + 2)2
+

a−1

(z + 2)
+ a0 + a1(z + 2) + a2(z + 2)2 + . . . , (3.179)

about z = −2, where

an =
1

2πi

∮

c

dz
f(z)

(z + 2)n+1
. (3.180)

Choose the contour c to be a circle centered at z = −2 with radius less than 3 so that it does not encircle
z = 1. Find an. Then, discuss the case when the contour encircles z = 1.
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3. (20 points.) Find the Laurent series for

f(z) =
1

(z + 2)(z − 1)
(3.181)

about z = 1.

4. (20 points.) Show that the coefficients an in the Laurent series for the complex function

e
x
2 (z− 1

z ) (3.182)

are Bessel functions of order n. It is called the generating function of Bessel functions.

3.7 Contour integrals with poles

1. (20 points.) Evaluate the contour integral

I =
1

2πi

∮

c

dz

z
, (3.183)

where the contour c is a unit circle going counterclockwise with center at the origin.

2. (20 points.) Evaluate the contour integral

I =
1

2πi

∮

c

dz

z2
, (3.184)

where the contour c is a unit circle going counterclockwise with center at the origin.

3. (Example.) The Heaviside step function is defined as

θ(t) =

{

1, if t > 0,

0, if t < 0.
(3.185)

What is the Fourier transform of the Heaviside step function? Recall the Fourier transform and the
corresponding inverse,

θ(t) =

∫ ∞

−∞

dω

2π
e−iωtθ̃(ω), (3.186a)

θ̃(ω) =

∫ ∞

−∞
dt eiωtθ(t). (3.186b)

(a) Using the definition in Eq. (5.32) in Eq. (5.33b) show that

θ̃(ω) =

∫ ∞

0

dt eiωt = lim
δ→0+

∫ ∞

0

dt eiωte−δt = lim
δ→0+

−1

i

1

ω + iδ
. (3.187)

(b) Verify that

θ(t) = lim
δ→0+

− 1

2πi

∫ ∞

−∞
dω

e−iωt

ω + iδ
(3.188)

is indeed an integral representation of Heaviside step function.
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z

c1

c2

c3

t < 0

t > 0

−iδ

Figure 3.2: Contour c = c1 + c2 for t < 0 and the contour c = c1 + c3 for t > 0 used to evaluate the Heaviside
step function.

i. Let t < 0. Let us consider

G1(t) = lim
δ→0+

− 1

2πi

∮

c1+c2

dz
e−izt

z + iδ
. (3.189)

See Figure 3.2. Using Cauchy’s theorem show that

G1(t) = 0. (3.190)

For the part of contour constituting c1 substitute z = x and show that

lim
δ→0+

− 1

2πi

∫

c1

dz
e−izt

z + iδ
= θ(t). (3.191)

For the part of contour constituting c2 substitute z = Reiθ and show that

lim
R→∞

lim
δ→0+

− 1

2πi

∫

c2

dz
e−izt

z + iδ
= 0. (3.192)

Thus, together, conclude that
θ(t) = 0, t < 0. (3.193)

ii. Let t > 0. Let us consider

G2(t) = lim
δ→0+

− 1

2πi

∮

c1+c3

dz
e−izt

z + iδ
, (3.194)

where note that the contour is going clockwise, opposite of the convention used in Cauchy’s
theorem. See Figure 3.2. Using Cauchy’s theorem show that

G2(t) = 1. (3.195)

For the part of contour constituting c1 substitute z = x and show that

lim
δ→0+

− 1

2πi

∫

c1

dz
e−izt

z + iδ
= θ(t). (3.196)

For the part of contour constituting c3 substitute z = Reiθ and show that

lim
R→∞

lim
δ→0+

− 1

2πi

∫

c3

dz
e−izt

z + iδ
= 0. (3.197)

Thus, together, conclude that
θ(t) = 1, t > 0. (3.198)
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(c) Observe that G1(t) and G2(t) are equal on the real axis, but are not equal in general. However, the
analyticity of these functions allows us to deduce an integral on the real line in terms of the value of
the functions in different regions of the complex plane.

4. (20 points.) See Figure 3.2. Let δ > 0.

(a) For t < 0 evaluate

G1(t) = − 1

2πi

∮

c1+c2

dz
e−izt

z + iδ
. (3.199)

(b) For t > 0 evaluate

G2(t) = − 1

2πi

∮

c1+c3

dz
e−izt

z + iδ
, (3.200)

where note that the contour is going clockwise, opposite of the convention used in Cauchy’s theorem.

5. (20 points.) Evaluate the integral

I(a) =
1

2πi

∫ ∞

−∞

dx

(x+ ia)
(3.201)

for a > 0. Do this by extending to the complex plane and evaluating along a contour in the upper half
complex plane. Repeat the exercise along a contour in the lower half complex plane.
Solution: −1/2.

6. (20 points.) Evaluate the integral
∫ ∞

−∞

dx

x2 + 1
(3.202)

using Cauchy’s theorem, after choosing a suitable contour. Verify your result by evaluating the integral
using the elementary substitution method, x = tan θ.
Solution: π.

7. (20 points.) Evaluate the integral
∫ ∞

−∞

dx eiax

x2 + 1
(3.203)

using Cauchy’s theorem, after choosing a suitable contour. Here a is real.
Solution: πe−|a|.

8. (20 points.) Evaluate the integral
∫ ∞

−∞
dx

sin x

x
(3.204)

using Cauchy’s theorem, after choosing a suitable contour. The complex function sin z/z has a pole at
z = 0 and it lies on the contour. To avoid this, consider the integral

lim
ǫ→0

∫ ∞

−∞
dx

sinx

x + iǫ
. (3.205)

To verify the result consider the integral

I(a) =

∫ ∞

−∞
dx

sinx

x
e−ax. (3.206)

Evaluate −dI/da. Then, integrate with the conditions I(∞) = 0 to evaluate I(0).
Solution: π.
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9. (20 points.) Consider the integral

I(a) =
1

2π

∫ 2π

0

dθ

(1 + a cos θ)
, (3.207)

where a is complex. Substitute z = eiθ, such that

2 cos θ = z +
1

z
, (3.208)

and express the integral as a contour integral,

I(a) =
1

2πi

2

a

∮

c

dz
(

z2 + 2
a
z + 1

) , (3.209)

where the contour c is along the unit circle going counterclockwise. Show that

z2 +
2

a
z + 1 = (z − r+)(z − r−), (3.210)

where

r± = −1

a
±
√

1

a2
− 1. (3.211)

Using residue theorem evaluate I(a) for |Re(a)| < 1 and Im(a) = 0.

10. (20 points.) Consider the contour integral

I(a) =
1

2πi

2

a

∮

c

dz
(

z2 + 2
a
z + 1

) , (3.212)

where the contour c is along the unit circle going counterclockwise. Show that

z2 +
2

a
z + 1 = (z − r+)(z − r−), (3.213)

where

r± = −1

a
±
√

1

a2
− 1. (3.214)

Using residue theorem evaluate I(13 ).

11. (20 points.) Consider the contour integral

I(v, w) =
1

2πi

1

2

∮

c

dz

z

z2 + 2w
v
z + 1

(

z + v
w

) (

z + w
v

) , (3.215)

where the contour c is along the unit circle going counterclockwise. Evaluate I(1, 2) and I(2, 1). In general,
what happens when v < w and v > w?

12. (90 points.) Consider the integral

I(v, w) =
1

2π

∫ 2π

0

dθ
w2 + vw cos θ

v2 + w2 + 2vw cos θ
, (3.216)

where v and w are complex.
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(a) Substitute z = eiθ, such that

2 cos θ = z +
1

z
, (3.217)

and express the integral as a contour integral,

I(v, w) =
1

2πi

1

2

∮

c

dz

z

z2 + 2w
v
z + 1

(

z + v
w

) (

z + w
v

) , (3.218)

where the contour c is along the unit circle going counterclockwise. Locate the three poles, z = 0,
z = −v/w, and z = −w/v.

(b) Evaluate the residues and show that

I(v, w) =

{

1, if |v| < |w|,
0, if |w| < |v|.

(3.219)

Observe that for v = w, (which is more restrictive than |v| = |w|,) we have

I(v, w) =
1

2
. (3.220)

(c) Let us seek the partial fraction decomposition

z2 + 2w
v
z + 1

z
(

z + v
w

) (

z + w
v

) =
a

z
+

b
(

z + v
w

) +
c

(

z + w
v

) . (3.221)

Show that a = 1, b = 1, and c = −1. Thus, express the integral in the form

I(v, w) =
1

2

[

1

2πi

∮

c

dz

z
+

1

2πi

∮

c

dz
(

z + v
w

) − 1

2πi

∮

c

dz
(

z + w
v

)

]

. (3.222)

(d) Show that
1

2πi

∮

c

dz

z
= 1. (3.223)

Evaluate the integrals

1

2πi

∮

c

dz
(

z + v
w

) = θ

(

1− |v|
|w|

)

, (3.224a)

1

2πi

∮

c

dz
(

z + w
v

) = θ

(

1− |w|
|v|

)

, (3.224b)

where θ(x) is the Heaviside step function. Thus, derive the relation

I(v, w) =
1

2

[

1 + θ

(

1− |v|
|w|

)

− θ

(

1− |w|
|v|

)]

(3.225)

and verify Eq. (3.219).

(e) What electrostatic configuration in two dimensions represents the complex function in Eq. (3.221).

13. (20 points.) Consider the integral

I(a) =
1

2π

∫ 2π

0

dθ

(1 + a cos θ)
, (3.226)

where a is complex.
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(a) Substitute z = eiθ, such that

2 cos θ = z +
1

z
, (3.227)

and express the integral as a contour integral,

I(a) =
1

2πi

2

a

∮

c

dz
(

z2 + 2
a
z + 1

) , (3.228)

where the contour c is along the unit circle going counterclockwise. Show that

z2 +
2

a
z + 1 = (z − r+)(z − r−), (3.229)

where

r± = −1

a
±
√

1

a2
− 1. (3.230)

(b) Show that for real a

|r±|
{

< 1, if |Re(a)| < 1 and Im(a) = 0,

= 1, if |Re(a)| ≥ 1 and Im(a) = 0.
(3.231)

Let a = |a|eiα. Investigate the position of r± on the complex plane. Verify (by plotting absolute
value of r±) that

|r+|
{

< 1, if Re(a) > 0 and Im(a) 6= 0,

> 1, if Re(a) ≤ 0 and Im(a) 6= 0,
(3.232)

and

|r−|
{

> 1, if Re(a) > 0 and Im(a) 6= 0,

< 1, if Re(a) ≤ 0 and Im(a) 6= 0.
(3.233)

Thus, locate the two poles, z = r±, for complex values of a.

(c) Evaluate the residues and show that

I(a) =



































1√
1− a2

, if |Re(a)| < 1 and Im(a) = 0,

1√
1− a2

, if Re(a) > 0 and Im(a) 6= 0,

− 1√
1− a2

, if Re(a) < 0 and Im(a) 6= 0,

divergent, if |Re(a)| ≥ 1 and Im(a) = 0.

(3.234)

14. (20 points.) Consider the integral

I(a) =
1

2π

∫ 2π

0

dθ
1

1 − 2a cos θ + a2
, (3.235)

where a is complex.

(a) Substitute z = eiθ, such that

2 cos θ = z +
1

z
, (3.236)

and express the integral as a contour integral along the unit circle going counterclockwise. Locate
the poles.



68 CHAPTER 3. FUNCTIONS OF A COMPLEX VARIABLE

(b) Evaluate the residues and show that

I(a) =















1

1− a2
, if |a| < 1,

1

a2 − 1
, if |a| > 1.

(3.237)

(c) Plot I(a) for real values of a. Plot real and imaginary part of I(a) for complex a. Argue that I(1)
is divergent.

15. (20 points.) Evaluate the contour integral

∮

c

dz
(z5 + z3 + 1)

(z2 − 5z + 6)
, (3.238)

where the contour c is along the unit circle going counterclockwise.

3.8 Contour integrals with branch points

1. (20 points.) Show that

∮

c1

dz ln z = 2πiR, (3.239a)

∮

c2

dz ln z = 0, (3.239b)

where the contours c1 and c2 are shown in Figure 3.3, and R is the radius of the circle forming the contour.
Is the function ln z analytic at z = 0? Is the function ln z analytic at z 6= 0? Show that if the contour c
winds around the origin more than once the integral evaluates to

∮

c

dz ln z = 2πiRn, (3.240)

where n is the number of times the contour winds around the origin.
Hint: Show that

∮

c1

dz ln z = −R
∫ 2π

0

θdθeiθ . (3.241)

2. (20 points.) Discuss the discontinuities (branch cut) in the complex function

f(z) = ln z (3.242)

on the complex plane z. In particular, qualitatively discuss if the contour integrals

∮

c1

dz ln z and

∮

c2

dz ln z (3.243)

evaluate to zero using Cauchy’s theorem, where the contours c1 and c2 are shown in Figure 3.3. Show
that

∮

c1

dz ln z = 2πir, (3.244a)

∮

c2

dz ln z = 0. (3.244b)



3.8. CONTOUR INTEGRALS WITH BRANCH POINTS 69

z

c1 c2

Figure 3.3: Contour c1 encircles the origin while contour c2 does not encircle the origin.

z

c1

c2

c4

c3

Figure 3.4: Contour c = c1 + c2 + c3 + c4. The radii of the contours c2 and c4 are R and ǫ, respectively, and
contours c1 and c3 are δ away from the real line. We assume limits ǫ→ 0, R → ∞, and δ → 0.

3. (Example.) Consider the integral

I(θ) =
1

π

∫ ∞

0

x
1

2 dx

1 + 2x cos θ + x2
, (3.245)

where 0 ≤ θ < 2π is real. To evaluate I(θ) let us consider the following integral on the complex plane

G(θ) =
1

π

∮

c

z
1

2 dz

1 + 2z cos θ + z2
, (3.246)

where the contour c is described in Figure 3.4.

(a) Show that
1 + 2z cos θ + z2 = (z + eiθ)(z + e−iθ) (3.247)

and identify the poles. Show that the integrand has a branch point at z = 0. Choose the branch cut
to be the positive real line. Using Cauchy’s theorem show that

G(θ) = 2
sin θ

2

sin θ
. (3.248)

(b) Next, let us evaluate G(θ) by evaluating the integrals on the contour explicitly.

i. For the part of contour constituting c1 substitute z = xeiδ ∼ x+ iδ′ and show that

lim
δ→0

lim
ǫ→0

lim
R→∞

1

π

∮

c1

z
1

2 dz

(z + eiθ)(z + e−iθ)
= I(θ). (3.249)
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ii. For the part of contour constituting c3 substitute z = xei(2π−δ) ∼ x− iδ′ and show that

lim
δ→0

lim
ǫ→0

lim
R→∞

1

π

∮

c3

z
1

2 dz

(z + eiθ)(z + e−iθ)
= −ei 2π2 I(θ) = I(θ). (3.250)

iii. For the part of contour constituting c2 substitute z = Reiθ and show that

lim
R→∞

1

π

∮

c2

z
1

2 dz

(z + eiθ)(z + e−iθ)
= 0. (3.251)

iv. For the part of contour constituting c4 substitute z = ǫeiθ and show that

lim
ǫ→0

1

π

∮

c4

z
1

2 dz

(z + eiθ)(z + e−iθ)
= 0. (3.252)

(c) Together, conclude that

2
sin θ

2

sin θ
= I(θ) + 0 + I(θ) + 0. (3.253)

Thus, evaluate I(θ).

4. (20 points.) Evaluate the integral

I(θ) =
1

π

∫ ∞

0

x
1

3 dx

1 + 2x cos θ + x2
, (3.254)

where 0 ≤ θ < 2π. Show that

1 + 2z cos θ + z2 = (z + eiθ)(z + e−iθ). (3.255)

3.9 Analytic continuation

1. (20 points.) The following lecture recording from Fall 2020 available at

https://youtu.be/9Ac-en8ImDw

motivates the idea of analytic continuation. Let us consider the function

µ(s) =
1

s
, s 6= 0. (3.256)

(a) An integral representation of the function is

µ(s) =

∫ 1

0

dt ts−1, Re(s) > 0. (3.257)

Evaluate the integral and show that the integral is indeed equal to 1/s for Re(s) > 0. However, the
above integral representation breaks down for Re(s) ≤ 0. Show that

µ(0) =

∫ 1

0

dt

t
= lim

δ→0

∫ 1

δ

dt

t
= − lim

δ→0
ln δ (3.258)

is logarithmically divergent. Similarly, show that

µ(−1) =

∫ 1

0

dt

t2
= lim

δ→0

∫ 1

δ

dt

t2
= lim

δ→0

[

1− 1

δ

]

1

(−1)
(3.259)

is divergent. Check out µ(−2).

https://youtu.be/9Ac-en8ImDw
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z

c1c2

c3

Figure 3.5: Contour c = c1 + c2 + c3. The radius of the contour c2 is ǫ and contours c1 and c3 are δ away from
the real line. We assume limits ǫ→ 0 and δ → 0.

(b) Another representation of the function valid on the complete complex plane of s is

µ(s) =
1

(ei2πs − 1)

∫

c

dz zs−1, s 6= 0, (3.260)

where the integral is evaluated on the contour c = c1 + c2 + c3 described in Figure 3.5. Since the
integral representation in Eq. (3.260) does not have the restriction Re(s) > 0, and because its values
are identical to the integral representation in Eq. (3.257) for Re(s) > 0, it is the analytic continuation
of the integral representation in Eq. (3.257).

i. For contour c1 substitute z = x eiδ ∼ x+ ixδ and show that
∫

c1

dz zs−1 =
1

s

(

ǫs − 1
)

. (3.261)

ii. For contour c3 substitute z = ǫ eiθ and show that
∫

c2

dz zs−1 =
1

s

(

ei2πs − 1
)

ǫs. (3.262)

iii. For contour c3 substitute z = x ei(2π−δ) and show that
∫

c3

dz zs−1 =
1

s

(

1− ǫs
)

ei2πs. (3.263)

Together, we have

µ(s) =
1

(ei2πs − 1)

1

s

[(

ǫs − 1
)

+
(

ei2πs − 1
)

ǫs +
(

1− ǫs
)

ei2πs
]

=
1

s
. (3.264)

Observe that the apparent divergence when the factor (ei2πs−1) equals 0 for integer s is nonexistent.

3.10 List of topics

1. In electrostatics the static condition can be released by letting the curl to be non-zero, as a perturbation.
In this spirit, can we construct a ‘weakly’ analytic function?

2. Mobius transformation, inversion, electrostatics, harmonic functions.

3. Continued fractions and power series. Can continued fraction of a number be derived using the idea of
complex numbers? Or, using electrostatics.

4. Has complex functions on the surface of a sphere been studied?
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Chapter 4

Matrix algebra and glimpse of
quantum mechanics

4.1 Refer notes on quantum mechanics

73
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Chapter 5

Function spaces

5.1 Vector space

1. A vector A in three dimensions can be expressed in the form

A = a1ê1 + a2ê2 + a3ê3. (5.1)

Here êi are called the basis vectors and ai are components of the vector along the basis vectors.

(a) Orthogonality relation: Let us assume that the basis vectors are orthogonal to each other. This is
stated compactly as

êi · êj = δij , i, j = 1, 2, 3, (5.2)

where δij is the Kronecker delta symbol.

(b) Vector components: Taking the dot product with ê1 in each term in Eq. (5.1) we obtain

A · ê1 = a1(ê1 · ê1) + a2(ê2 · ê1) + a3(ê3 · ê1). (5.3)

Using the orthogonality relations between the basis vectors we immediately have

A · ê1 = a1. (5.4)

Similar relations can be derived for other components, and they can be together expressed in the
form

A · êi = ai, i = 1, 2, 3. (5.5)

(c) Completeness relation: Substituting the expressions for the vector components back in Eq. (5.1) we
have

A = (A · ê1)ê1 + (A · ê2)ê2 + (A · ê3)ê3 (5.6a)

= A ·
[

ê1ê1 + ê2ê2 + ê3ê3

]

, (5.6b)

where the second equality is obtained by recognizing the common factor. Thus, the vector multiplied
with the quantity inside square brackets returns back the vector. Since the multiplication involves a
scalar dot product, the quantity in square brackets can not be a vector because then it will return a
scalar. We identify it to be the unit dyadic. Thus,

ê1ê1 + ê2ê2 + ê3ê3 = 1, (5.7)

which is the completeness relation for the basis vectors.
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5.2 Discrete Fourier series

1. Wiki article on convergence of Fourier series

2. Dirichlet kernel

3. Gibbs phenomenon

1. The Fourier space is spanned by the Fourier eigenfunctions

eimφ, m = 0,±1,±2, . . . , 0 ≤ φ < 2π. (5.8)

An arbitrary function f(φ) has the Fourier series representation

f(φ) =
1

2π

∞
∑

m=−∞
ame

imφ, (5.9)

where eimφ are the Fourier eigenfunctions and am are the respective Fourier components.

(a) Orthogonality relation: The Fourier eigenfunctions satisfy the orthogonality relation

1

2π

∫ 2π

0

dφ e−inφeimφ = δmn. (5.10)

(b) Fourier components: Using the orthogonality relations we can find the Fourier components to be

am =

∫ 2π

0

dφ e−imφf(φ). (5.11)

(c) Completeness relation: The Fourier eigenfunctions satisfy the completeness relation

1

2π

∞
∑

m=−∞
eimφe−imφ′

= δ(φ− φ′). (5.12)

(d) Differential equation: The Fourier eigenfunctions satisfy the differential equation

−
[

d2

dφ2
−m2

]

eimφ = 0. (5.13)

(e) Green’s function: The associated Green’s function satisfies the equation

−
[

d2

dφ2
−m2

]

g(φ, φ′) = δ(φ− φ′). (5.14)

Verify by substitution that

g(φ, φ′) =
1

2π

∞
∑

m=−∞

einφe−inφ′

n2 −m2
(5.15)

satisfies the Green function equation.
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5.2.1 Problems

1. (20 points.) Determine all the Fourier components am for the following functions: cosφ, sinφ, cos2 φ,
sin2 φ, cos3 φ, sin3 φ.

2. (20 points.) Determine the particular function f(φ) that has the Fourier components

am = 1 (5.16)

for all m. That is, all the Fourier coefficients are contributing equally in the series.

3. (20 points.) To determine the Fourier components of tanφ start from

tanφ =
1

i

eiφ − e−iφ

eiφ + e−iφ
(5.17)

and show that

tanφ =
1

i
+

∞
∑

m=1

e−2imφ 2(−1)m

i
. (5.18)

Thus, read out all the Fourier components. Similarly, find the Fourier components of cotφ.

4. (20 points.) Fourier series (or transformation) is defined as (0 ≤ φ < 2π)

f(φ) =
1

2π

∞
∑

−∞
eimφam, (5.19)

where the coefficients am are determined using

am =

∫ 2π

0

dφ e−imφf(φ). (5.20)

Determine all the Fourier components am for the function cos3 φ.

5.3 Continuous Fourier integral

1. The (continuous) Fourier space is spanned by the Fourier eigenfunctions

eikx, −∞ < k <∞, −∞ < x <∞. (5.21)

An arbitrary function f(x) has the Fourier series representation

f(x) =

∫ ∞

−∞

dk

2π
eikxf̃(k), (5.22)

where eikx are the Fourier eigenfunctions and f̃(k) are the respective Fourier components.

(a) Orthogonality relation: The Fourier eigenfunctions satisfy the orthogonality relation

1

2π

∫ ∞

−∞
dx e−ik′xeikx = δ(k − k′). (5.23)

(b) Fourier components: Using the orthogonality relations we can find the Fourier components to be

f̃(k) =

∫ ∞

−∞
dx e−ikxf(x). (5.24)
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(c) Completeness relation: The Fourier eigenfunctions satisfy the completeness relation

∫ ∞

−∞

dk

2π
eikxe−ikx′

= δ(x− x′). (5.25)

(d) Differential equation: The Fourier eigenfunctions satisfy the differential equation

−
[

d2

dx2
− k2

]

eikx = 0. (5.26)

5.3.1 Problems

1. (20 points.) Find the Fourier transform of a Gaussian function

f(x) = e−ax2

. (5.27)

That is, evaluate the integral

f̃(k) =

∫ ∞

−∞
dx e−ikxe−ax2

. (5.28)

2. (20 points.) Find the Fourier transform of the function

f(x) = e−a|x|. (5.29)

That is, evaluate the integral

f̃(k) =

∫ ∞

−∞
dx e−ikxe−a|x|. (5.30)

Solution:

f̃(k) =
2a

a2 + k2
. (5.31)

3. (20 points.) The Heaviside step function is defined as

θ(t) =

{

1, if t > 0,

0, if t < 0.
(5.32)

The Fourier transform and the corresponding inverse ae,

θ(t) =

∫ ∞

−∞

dω

2π
e−iωtθ̃(ω), (5.33a)

θ̃(ω) =

∫ ∞

−∞
dt eiωtθ(t). (5.33b)

(a) Using the definition in Eq. (5.32) in Eq. (5.33b) show that

θ̃(ω) =

∫ ∞

0

dt eiωt = lim
δ→0+

∫ ∞

0

dt eiωte−δt = lim
δ→0+

−1

i

1

ω + iδ
. (5.34)

(b) Verify that

θ(t) = lim
δ→0+

− 1

2πi

∫ ∞

−∞
dω

e−iωt

ω + iδ
(5.35)

is indeed an integral representation of Heaviside step function.
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4. (20 points.) Fourier series (or transformation) is defined as (−∞ < x <∞)

f(x) =

∫ ∞

−∞

dk

2π
eikxa(k), (5.36)

where the coefficients a(k) are determined using

a(k) =

∫ ∞

−∞
dxe−ikxf(x). (5.37)

(a) Show that
dnf(x)

dxn
=

∫ ∞

−∞

dk

2π
(ik)neikxa(k). (5.38)

(b) Show that the differential equation

−
(

d2

dx2
− ω2

)

f(x) = δ(x) (5.39)

in the Fourier space is the algebraic equation

(k2 + ω2)a(k) = 1. (5.40)

Thus, the solution to the differential equation is the Fourier transform of

a(k) =
1

ω2 + k2
. (5.41)

Show that

f(x) =
e−ω|x|

2ω
. (5.42)

5. (20 points.) Consider the inhomogeneous linear differential equation
(

a
d2

dx2
+ b

d

dx
+ c

)

f(x) = δ(x). (5.43)

Use the Fourier transformation and the associated inverse Fourier transformation

f(x) =

∫ ∞

−∞

dk

2π
eikxf̃(k), (5.44a)

f̃(k) =

∫ ∞

−∞
dxe−ikxf(x), (5.44b)

to show that the corresponding equation satisfied by f̃(k) is algebraic. Find f̃(k).

5.4 Half-range Fourier series

1. Dirac comb, periodic Green’s function, completeness relation for half-range in Schwinger’s EM Section
17.7.

1. The half-range Fourier space is spanned by the Fourier eigenfunctions

sinmφ, m = 1, 2, 3, . . . , 0 ≤ φ ≤ π. (5.45)

An arbitrary function f(φ), for φ limited to half the range, has the half-range Fourier series representation

f(φ) =

∞
∑

m=1

am sinmφ, (5.46)

where sinmφ are the half-range Fourier eigenfunctions and am are the respective half-range Fourier com-
ponents.
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(a) Orthogonality relation: The half-range Fourier eigenfunctions satisfy the orthogonality relation

2

π

∫ π

0

dφ sinmφ sinm′φ = δmm′ . (5.47)

(b) Fourier components: Using the orthogonality relations we can find the Fourier components to be

am =
2

π

∫ π

0

dφ sinmφf(φ). (5.48)

(c) Completeness relation: The Fourier eigenfunctions satisfy the completeness relation

2

π

∞
∑

m=1

sinmφ sinmφ′ = δ(φ− φ′). (5.49)

(d) Differential equation: The half-range Fourier eigenfunctions satisfy the differential equation

−
[

d2

dφ2
−m2

]

sinmφ = 0. (5.50)

Note that half-range Fourier eigenfunctions are zero at φ = 0 and φ = π.

5.4.1 Problems

1. (20 points.) Prove the orthogonality relation

2

π

∫ π

0

dφ sinmφ sinm′φ = δmm′ . (5.51)

Hint: Use exponential representation for sin functions.

2. (20 points.) Prove the completeness relation

2

π

∞
∑

m=1

sinmφ sinmφ′ = δ(φ− φ′). (5.52)

Note that φ and φ′ are limited to the range 0 to π.
Hint: Use exponential representation for sin functions.

3. (20 points.) For φ limited to the range

0 ≤ φ ≤ π (5.53)

show that cosφ can be expressed as a linear combination of sin functions. That is,

cosφ =

∞
∑

m=1

am sinmφ. (5.54)

Show that

am =











0, m = 1, 3, 5, . . . ,

4

π

m

(m2 − 1)
, m = 2, 4, 6, . . . .

(5.55)

Note that the series expansion is not valid at the boundaries φ = 0 and φ = π.
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4. (20 points.) For φ limited to the range
0 ≤ φ ≤ π (5.56)

show that 1 can be expressed as a linear combination of sin functions. That is,

1 =

∞
∑

m=1

am sinmφ. (5.57)

Show that

am =







4

π

1

m
, m = 1, 3, 5, . . . ,

0, m = 2, 4, 6, . . . .
(5.58)

Note that the series expansion is not valid at the boundaries φ = 0 and φ = π. Evaluate the series at
φ = π/2 and find the series

π

4
= 1− 1

3
+

1

5
− 1

7
+ . . . . (5.59)

5.5 Legendre polynomials

Refer EM notes.
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Chapter 6

Linear differential equations

6.1 Wronskian

6.2 Initial conditions versus boundary conditions

6.3 Harmonic oscillator

6.4 Damped harmonic oscillator

1. (Example.) A damped harmonic oscillator, constituting of a body of mass m and a spring of spring
constant k, is described by

ma = −kx− bv, (6.1)

where x is position, v = dx/dt is velocity, a = dv/dt is acceleration, and b is the damping coefficient.
Thus, we have the differential equation

[

d2

dt2
+ 2γ

d

dt
+ ω2

0

]

x(t) = 0 (6.2)

with initial conditions

x(0) = x0, (6.3a)

ẋ(0) = v0, (6.3b)

where

ω2
0 =

k

m
, 2γ =

b

m
. (6.4)

(a) γ = 0: In the absence of damping show that the solution is

x(t) = x0 cosω0t+
v0
ω0

sinω0t. (6.5)

(b) γ < ω0: Underdamped harmonic oscillator.

x(t) = e−γt

[

x0 cos
√

ω2
0 − γ2t+

(v0 + γx0)
√

ω2
0 − γ2

sin
√

ω2
0 − γ2t

]

. (6.6)

(c) γ = ω0: Critically damped harmonic oscillator.

x(t) = e−ω0t [x0 + (v0 + ω0x0)t] . (6.7)

83
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(d) γ > ω0: Overdamped harmonic oscillator.

x(t) = e−γt

[

x0 cosh
√

γ2 − ω2
0t+

(v0 + γx0)
√

γ2 − ω2
0

sinh
√

γ2 − ω2
0t

]

. (6.8)

(e) Set ω0 = 1, which is equivalent to the substitution ω0t = τ , and sets the scale for the time t. That
is, time is measured in units of T = 2π/ω0. The system is then completely characterized by the
parameter γ/ω0 and the initial conditions x0 and v0. Plot the solutions for the initial conditions
x0 = 0 and v0 = 1.

2. (20 points.) Starting from the solution for the position of an underdamped harmonic oscillator (γ < ω0),

x(t) = e−γt

[

x0 cos
√

ω2
0 − γ2t+

(v0 + γx0)
√

ω2
0 − γ2

sin
√

ω2
0 − γ2t

]

, (6.9)

obtain the solution for the velocity v(t) = dx/dt of an underdamped harmonic oscillator (γ < ω0) in the
form

v(t) = e−γt

[

v0 cos
√

ω2
0 − γ2t− (ω2

0x0 + γv0)
√

ω2
0 − γ2

sin
√

ω2
0 − γ2t

]

. (6.10)

3. (20 points.) A critically damped harmonic oscillator is described by the differential equation

[

d2

dt2
+ 2ω0

d

dt
+ ω2

0

]

x(t) = 0, (6.11)

where ω0 is a characteristic frequency. Find the solution x(t) for initial conditions x(0) = x0 and ẋ(0) = 0.
Plot x(t) as a function of t in the following graph where x0 e

−ω0t is already plotted for reference. For what
t is the solution x(t) a maximum?

t

x(t)

1
ω0

x0

Figure 6.1: Critically damped harmonic oscillator.

4. (20 points.) A critically damped harmonic oscillator is described by the differential equation

[

d2

dt2
+ 2ω0

d

dt
+ ω2

0

]

x(t) = 0, (6.12)

where ω0 is a characteristic frequency. Find the solution x(t) for initial conditions x(0) = 0 and ẋ(0) = v0.
Plot x(t) as a function of t in the graph in Figure 6.2, where ω0 and v0/ω0 is used to set scales for time t
and position x(t). For what t is the solution x(t) a maximum?
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t

x(t)

1
ω0

v0
ω0

Figure 6.2: Critically damped harmonic oscillator.

5. (20 points.) Find the solution to the linear differential equation
[

d3

dt3
+ 3

d2

dt2
+ 3

d

dt
+ 1

]

x(t) = 0 (6.13)

for initial conditions x(0) = 0, ẋ(0) = 0, and ẍ(0) = a0.

6. (20 points.) A body experiencing only damping is described by the differential equation
[

d2

dt2
+ 2γ

d

dt

]

x(t) = 0, (6.14)

where γ is a measure of the damping. Find the solution x(t) for initial conditions x(0) = x0 and ẋ(0) = v0
to be

x(t) = x0 +
v0
2γ

[

1− e−2γt
]

. (6.15)

Obtain the above expression starting from the solution for the overdamped harmonic oscillator (γ > ω0)

x(t) = e−γt

[

x0 cosh
√

γ2 − ω2
0t+

(v0 + γx0)
√

γ2 − ω2
0

sinh
√

γ2 − ω2
0t

]

(6.16)

by setting ω0 = 0. Interpret the solution for v0 = 0, why isn’t there no motion?

7. (20 points.) Starting from the solution for the underdamped harmonic oscillator (γ < ω0),

x(t) = e−γt

[

x0 cos
√

ω2
0 − γ2t+

(v0 + γx0)
√

ω2
0 − γ2

sin
√

ω2
0 − γ2t

]

, (6.17)

obtain the solution for the overdamped harmonic oscillator (γ > ω0),

x(t) = e−γt

[

x0 cosh
√

γ2 − ω2
0t+

(v0 + γx0)
√

γ2 − ω2
0

sinh
√

γ2 − ω2
0t

]

. (6.18)

8. (20 points.) Starting from the solution for the underdamped harmonic oscillator (γ < ω0),

x(t) = e−γt

[

x0 cos
√

ω2
0 − γ2t+

(v0 + γx0)
√

ω2
0 − γ2

sin
√

ω2
0 − γ2t

]

, (6.19)

obtain the solution for the critically damped harmonic oscillator (γ = ω0),

x(t) = e−ω0t [x0 + (v0 + ω0x0)t] . (6.20)
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9. (20 points.) The solution for the underdamped harmonic oscillator (γ < ω0) is

x(t) = e−γt

[

x0 cos
√

ω2
0 − γ2t+

(v0 + γx0)
√

ω2
0 − γ2

sin
√

ω2
0 − γ2t

]

. (6.21)

For the initial condition x0 = 0 we have

x(t) =
v0 e

−γt

√

ω2
0 − γ2

sin
√

ω2
0 − γ2t. (6.22)

Verify that the function
v0 e

−γt

√

ω2
0 − γ2

(6.23)

is an envelope to the solution x(t). Investigate if this is an envelope for the case x0 6= 0.

6.5 Forced harmonic oscillator

1. (Example.) A forced harmonic oscillator, in the absence of damping, constituting of a body of mass m
and a spring of spring constant k, is described by

ma+ kx = F (t), (6.24)

where x is position, v = dx/dt is velocity, a = dv/dt is acceleration, and F (t) is a driving force. Thus, we
have the differential equation

−
[

d2

dt2
+ ω2

0

]

x(t) = A(t), (6.25)

where

ω2
0 =

k

m
, A(t) = −F (t)

m
. (6.26)

Let us consider the case with initial conditions

x(0) = 0, (6.27a)

ẋ(0) = 0. (6.27b)

Verify by substitution that

x(t) = − 1

ω0

∫ t

0

dt′ sinω0(t− t′)A(t′) (6.28)

is the solution.

2. (Example.) Consider the differential equation

−
[

d2

dt2
+ ω2

0

]

x(t) = −ω2
fxf sinωf t, (6.29)

with initial conditions

x(0) = 0, (6.30a)

ẋ(0) = 0. (6.30b)

Verify by substitution that

x(t) = −xf
ω2
f

(ω2
0 − ω2

f)

1

ω0

[

ωf sinω0t− ω0 sinωf t
]

(6.31)

is the solution. Show that the first term in the solution, called the transient solution, is solution to the
homogeneous part of the differential equation. Show that the second term in the solution, called the
steady-state solution, is a particular solution to the inhomogeneous differential equation.



Chapter 7

Partial differential equations

7.1 Vibrations in a string

1. (20 points.) Vibrations of a (guitar) string of length a are described by the height of oscillation

h = h(x, t) (7.1)

that satisfies the differential equation
∂2h

∂x2
=

1

v2
∂2h

∂t2
(7.2)

with boundary conditions

h(0, t) = 0, (7.3a)

h(a, t) = 0, (7.3b)

and initial conditions

h(x, 0) = h0(x), (7.4a)
{

∂

∂t
h(x, t)

}

t=0

= 0. (7.4b)

Here v is the speed of propagation given in terms of the tension T in the string (presumed to be uniform)
and mass per unit length λ of the string, v =

√

T/λ. The given function h0(x) characterizes how the
string is released initially.

(a) Let F (x) and T (t) be eigenfunctions in terms of which the solution h(x, t) can be described. Thus,
the product

F (x)T (t) (7.5)

satisfies the differential equation for h(x, t). Substitute in Eq. (7.2) and rearrange to obtain

1

X(x)

∂2X(x)

∂x2
=

1

T (t)

1

v2
∂2T (t)

∂t2
. (7.6)

(b) The left hand side of Eq. (7.6) is only dependent on x and the right hand side is only dependent on t.
Argue that this can be satisfied for arbitrary x and t only if each side is equal to the same constant,
say α. Note that α could be complex. This is called separation of variables. Thus, we have

1

X(x)

∂2X(x)

∂x2
= α =

1

T (t)

1

v2
∂2T (t)

∂t2
. (7.7)
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(c) Rewrite the equation of X(x) in the form

∂2X

∂x2
= αX. (7.8)

Verify that it permits the solution

X(x) = Ae
√
αx +Be−

√
αx. (7.9)

Show that the boundary conditions in Eq. (7.3) impose the conditions

A+B = 0, (7.10a)

Ae
√
αL +Be−

√
αL = 0. (7.10b)

Verify that A = 0 and B = 0 is a solution. However, it is a trivial solution, because it corresponds
to no motion. Argue that Eq. (7.10) is also satisfied if

det

(

1 1

e
√
αa e−

√
αa

)

= 0. (7.11)

Thus, derive

α = −m2π
2

a2
, m = 0,±1,±2, . . . . (7.12)

Thus, conclude that X(x) satisfies solutions of the form

X(x) = Aeimπ x
a +Be−imπ x

a . (7.13)

Requiring this solution to satisfy the boundary conditions show that

X(x) = A′ sin
(

mπ
x

a

)

, (7.14)

where A′ = 2iA. Observe that the boundary conditions do not determine A′, it is left arbitrary.

(d) Use the Wronskian to show that the eigenfunctions

sin
(

mπ
x

a

)

, m = 1, 2, 3, . . . , (7.15)

constitute linearly independent solutions. Verify that these functions satisfy the orthogonality rela-
tions

2

a

∫ a

0

dx sin
(

mπ
x

a

)

sin
(

m′π
x

a

)

= δmm′ . (7.16)

These functions also satisfy the completeness relation

2

a

∞
∑

m=1

dx sin
(

mπ
x

a

)

sin

(

mπ
x′

a

)

= δ(x− x′), (7.17)

which need not be proved here. This allows us to expand the desired solution h(x, t) in terms of
these eigenfunctions as

h(x, t) =

∞
∑

m=1

Tm(t) sin
(

mπ
x

a

)

, (7.18)

where Tm(t) are the respective components. Verify that h(x, t) satisfies the boundary conditions.
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(e) Substituting this in the original differential equation show that

∞
∑

m=1

sin
(

mπ
x

a

)

[

∂2Tm
∂t2

+
(

mπ
v

a

)2

Tm

]

= 0. (7.19)

Using the completeness relation deduce the differential equations

∂2Tm
∂t2

= −
(

mπ
v

a

)2

Tm, (7.20)

for each m. The solutions for these equations are of the form

Tm(t) = Cm sin
(

mπ
v

a
t
)

+Dm cos
(

mπ
v

a
t
)

. (7.21)

Thus, show that

h(x, t) =
∞
∑

m=1

[

Cm sin
(

mπ
v

a
t
)

+Dm cos
(

mπ
v

a
t
)

]

sin
(

mπ
x

a

)

. (7.22)

Using the initial conditions show that

h0(x) =
∞
∑

m=1

Dm sin
(

mπ
x

a

)

, (7.23a)

0 =

∞
∑

m=1

Cm

(

mπ
v

a

)

sin
(

mπ
x

a

)

. (7.23b)

Thus, learn that
Cm = 0. (7.24)

Using orthogonality relations invert Eq. (7.23a) to derive

Dm =
2

a

∫ a

0

dxh0(x) sin
(

mπ
x

a

)

. (7.25)

(f) Together, summarize the solution to be

h(x, t) =

∞
∑

m=1

Dm cos
(

mπ
v

a
t
)

sin
(

mπ
x

a

)

, (7.26)

where Dm is determined using the initial condition h0(x) using

Dm =
2

a

∫ a

0

dxh0(x) sin
(

mπ
x

a

)

. (7.27)

Find all Dm’s for

h0(x) = H sin
(

π
x

a

)

. (7.28)

Hint: Use the orthogonality relations.
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Chapter 8

Fluid dynamics

8.1 Navier-Stokes equations

Continuity equation.

Momentum conservation.

Energy conservation.

8.2 Low-Reynolds-number flow (Incomplete)

8.2.1 Stokes equations

When the inertial effects are negligible the Navier-Stokes equations for the flow velocity u(r) and the fluid
pressure p(r) takes the form

∇ · u = 0, (8.1)

∇ ·
[

p1− µ∇u
]

= F, (8.2)

where µ is the uniform viscosity coefficient and f(r) is an external force density function. The boundary
conditions on the flow are imposed at |r| → ∞ to be u → 0 and p→ p∞.

Notes:

1. Solenoidal forcing function:

∇ ·F = 0, (8.3)

which allows the solution

f = µ∇× ω, (8.4)

where ω is the vorticity.

2. Vorticity:

ω = ∇× u. (8.5)

3. Stream function

u = ∇×ψ. (8.6)

4. Derive Stokes law for the drag force on a sphere.
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8.2.2 Problems

1. (20 points.) Read the article titled ‘Life at low Reynolds number’ by E. M. Purcell, American Journal
of Physics 45 (1977) 3. Here is the link to the article:

http://dx.doi.org/10.1119/1.10903

Here is a question asked to verify the understanding of the concept being discussed in the paper. Imagine
a micrometer sized bacteria, shaped like a human, swimming in water using the methods used by a typical
human swimmer. Qualitatively describe the motion of this hypothetical bacteria.

http://dx.doi.org/10.1119/1.10903


Chapter 9

Green’s function

Refer EM notes.

93



94 CHAPTER 9. GREEN’S FUNCTION



Chapter 10

Legnedre polynomials

10.1 Dipole moment

1. (30 points.) (Based on Griffiths 3rd/4th ed., Problem 4.9.)

(a) The electric field of a point charge q at distance r is

E(r) =
q

4πε0

r

r3
. (10.1)

The force on a point dipole in the presence of an electric field is

F = (d ·∇)E. (10.2)

Use these to find the force on a point dipole due to a point charge.

(b) The electric field of a point dipole d at distance r from the dipole is given by

E(r) =
1

4πε0

1

r3
[

3 r̂ (d · r̂)− d
]

. (10.3)

The force on a point charge in the presence of an electric field is

F = qE. (10.4)

Use these to find the force on a point charge due to a point dipole.

(c) Confirm that above two forces are equal in magnitude and opposite in direction, as per Newton’s
third law.

2. (40 points.) (Based on Griffiths 3rd/4th ed., Problem 4.8.)
We showed in class that the electric field of a point dipole d at distance r from the dipole is given by the
expression

E(r) =
1

4πε0

1

r3
[

3 r̂ (d · r̂)− d
]

. (10.5)

The interaction energy of a point dipole d in the presence of an electric field is given by

U = −d ·E. (10.6)

Further, the force between the two dipoles is given by

F = −∇U. (10.7)

Use these expressions to derive
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(a) the interaction energy between two point dipoles separated by distance r to be

U =
1

4πε0

1

r3
[

d1 · d2 − 3 (d1 · r̂)(d2 · r̂)
]

. (10.8)

(b) the force between the two dipoles to be

F =
1

4πε0

3

r4
[

(d1 · d2) r̂+ (d1 · r̂)d2 + (d2 · r̂)d1 − 5 (d1 · r̂)(d2 · r̂)r̂
]

. (10.9)

(c) Are the forces central? That is, is the force in the direction of r?

(d) Are the forces on the dipole equal in magnitude and opposite in direction? That is, do they satisfy
Newton’s third law?

3. (20 points.) For what a, b, and c, is the relation

∇

[

(d1 · r̂)(d2 · r̂)
r3

]

=
a (d1 · r̂)d2 + b (d2 · r̂)d1 + (d1 · r̂)(d2 · r̂) c

r4
(10.10)

an identity. What are the dimensions of a, b, and c?

4. (20 points.) The potential energy of an electric dipole p in an electric field, that is not necessarily
uniform, is

U = −p ·E. (10.11)

Restricting to electrostatics, (∇ ·D = ρ and ∇×E = 0,) show that the force on the electric dipole moment

F = −∇U (10.12)

is given in terms of the directional derivative of the electric field in the direction of the electric dipole
moment,

F = (p ·∇)E. (10.13)

5. (10 points.) Interaction energy of a dipole d with an electric field E is

U = −d · E = −dE cos θ. (10.14)

The torque on the dipole due to the electric field is

τ = d×E. (10.15)

Force is a manifestation of the systems tendency to minimize its energy, and in this spirit torque is defined
as,

τ = − ∂

∂θ
U = −dE sin θ. (10.16)

Show that there is no inconsistency, in sign, between the two definitions of torque.

6. (10 points.) Show that the effective charge density, ρeff, and the effective current density, jeff,

ρeff = −∇ ·P, (10.17)

jeff =
∂

∂t
P+∇×M, (10.18)

satisfy the equation of charge conservation

∂

∂t
ρeff +∇ · jeff = 0. (10.19)
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7. (10 points.) The magnetic dipole moment of charge qa moving with velocity va is

µ =
1

2
qara × va, (10.20)

where ra is the position of the charge. For a charge moving along a circular orbit of radius ra, with
constant speed va, deduce the magnetic moment

µ = IA n̂, I =
qa
∆t

va∆t

2πra
A = πr2a, (10.21)

where n̂ points along ra × va.

8. (30 points.) Identify the orbital angular momentum L = r × p in the expression for magnetic dipole
moment, then generalize to total angular momentum J = L+S, where S is the spin of the particle. Thus,
deduce the relation

µ = γJ, (10.22)

where γ is the gyromagnetic ratio of a particle. A magnetic dipole moment feels a torque given by

τ =
dJ

dt
= µ×B, (10.23)

which causes the magnetic moment to precess around the magnetic field. Solve the above equations and
find the precession angular frequency in terms of γ and B.

9. (30 points.) Consider a circular loop of wire carrying current I whose magnetic moment is given by
µ = IAn̂, where n̂ points perpendicular to the plane containing the loop (satisfying the right hand sense)
and A is the area of the loop. Consider the case n̂ = x̂. What is the magnitude and direction of the
torque experienced by this loop in the presence of a uniform magnetic field B = Bŷ. Describe the resultant
motion of the loop. (Hint: The torque experienced by a magnetic moment µ in a magnetic field B is
τ = µ×B.)

10.2 Legendre polynomials

1. (Recurrence relation.) The Legendre polynomials Pl(x) of degree l are defined, or generated, by
expanding the electric (or gravitational) potential of a point charge,

α

|r− r′| =
α

r>

1
√

1 +

(

r<
r>

)2

− 2

(

r<
r>

)

cos γ

=
α

r>

∞
∑

l=0

(

r<
r>

)l

Pl(cos γ), (10.24)

where
r̂ · r̂′ = cos γ = cos θ cos θ′ + sin θ sin θ′ cos(φ− φ′), (10.25)

and

r< = Minimum(r, r′), (10.26a)

r> = Maximum(r, r′). (10.26b)

Thus, in terms of variables

t =
r<
r>
, 0 ≤ t <∞, (10.27)

and
x = cos γ, −1 ≤ x < 1, (10.28)
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we can define the generating function for the Legendre polynomials as

g(t, x) =
1√

1 + t2 − 2xt
=

∞
∑

l=0

tlPl(x). (10.29)

Setting t = 0 in the above relation we immediately learn that

P0(x) = 1. (10.30)

Legenendre polynomials of higher degrees can be derived by Taylor expansion of the generating function.
However, for large degrees it is more efficient to derive a recurrence relation. To derive the recurrence
relation for Legendre polynomials we begin by differentiating the generating function with respect to t to
obtain

∂g

∂t
=

(x− t)

(1 + t2 − 2xt)
3

2

=

∞
∑

l=1

l tl−1Pl(x). (10.31)

Inquire why the sum on the right hand side now starts from l = 1. The second equality can be rewritten
in the form

(x− t)√
1 + t2 − 2xt

= (1 + t2 − 2xt)

∞
∑

l=1

l tl−1Pl(x), (10.32)

and implies

(x − t)

∞
∑

l=0

tlPl(x) = (1 + t2 − 2xt)

∞
∑

l=1

l tl−1Pl(x). (10.33)

Express this in the form

t0
[

xP0(x) − P1(x)
]

+t1
[

3xP1(x) − P0(x) − 2P2(x)
]

+

∞
∑

l=2

tl
[

(2l+ 1)xPl(x) − l Pl−1(x)− (l + 1)Pl+1(x)
]

= 0. (10.34)

Thus, using the completeness property of Taylor expansion, that is, equating the coefficients of powers of
t in the expansion, we have, for t0 and t1,

P1(x) = xP0(x), (10.35a)

2P2(x) = 3xP1(x)− P0(x), (10.35b)

and matching powers of tl for l ≥ 2 we obtain the recurrence relation for Legendre polynomials as

(l + 1)Pl+1(x) = (2l + 1)xPl(x)− l Pl−1(x), l = 0, 1, 2, 3, . . . . (10.36)

Note that the recurrence relations in Eq. (10.39), for l = 0 and l = 1, reproduces Eqs. (10.35). The
recurrence relations in Eq. (10.39) can be reexpressed in the form

l Pl(x) = (2l− 1)xPl−1(x) − (l − 1)Pl−2(x), l = 1, 2, 3, . . . . (10.37)

Thus, Eq. (10.37) generates Legendre polynomials of all degrees starting from P0(x) = 1, which was
obtained in Eq. (10.30).

2. (Differential equation.) The generating function for the Legendre polynomials Pl(x) of degree l is

g(t, x) =
1√

1 + t2 − 2xt
=

∞
∑

l=0

tlPl(x). (10.38)
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(a) Starting from the generating function and differentiating with respect to t we derived the recurrence
relation for Legendre polynomials in Eq. (10.39),

(l + 1)Pl+1(x) = (2l + 1)xPl(x)− l Pl−1(x), l = 0, 1, 2, . . . , (10.39)

in terms of
P0(x) = 1 = g(0, x). (10.40)

Differentiating the recurrence relation with respect to x show that

(2l + 1)Pl + (2l+ 1)xP ′
l = l P ′

l−1 + (l + 1)P ′
l+1, l = 0, 1, 2, . . . , (10.41)

where we supressed the dependence in x and prime in the superscript of P ′
l (x) denotes derivative

with respect to the argument x.

(b) Differentiating the generating function with respect to x show that

∂g

∂x
=

t

(1 + t2 − 2xt)
3

2

=

∞
∑

l=0

tlP ′
l (x). (10.42)

Show that the second equality can be rewritten in the form

t√
1 + t2 − 2xt

= (1 + t2 − 2xt)

∞
∑

l=0

tlP ′
l (x), (10.43)

and implies

t

∞
∑

l=0

tlPl(x) = (1 + t2 − 2xt)

∞
∑

l=0

tlP ′
l (x). (10.44)

Express this in the form

t0
[

P ′
0(x)

]

+t1
[

P ′
1(x) − 2xP ′

0(x) − P0(x)
]

+

∞
∑

l=2

tl
[

P ′
l (x) + P ′

l−2(x)− 2xP ′
l−1(x)− Pl−1(x)

]

= 0. (10.45)

Then, using the completeness property of Taylor expansion, that is, equating the coefficients of powers
of t in the expansion, show that, for t0 and t1,

P ′
0(x) = 0, (10.46a)

P ′
1(x) = P0(x) = 1, (10.46b)

and matching powers of tl for l ≥ 2 derive a recurrence relation for the derivative of Legendre
polynomials as

2xP ′
l−1 + Pl−1 = P ′

l + P ′
l−2, l = 2, 3, . . . . (10.47)

Here, we shall find it convenient to use the above recurrence relations in the form

2xP ′
l + Pl = P ′

l+1 + P ′
l−1, l = 1, 2, 3, . . . , (10.48)

which is obtained by setting l → l + 1.

(c) Equations (10.41) and (10.48) are linear set of equations for P ′
l−1 and P ′

l+1 in terms of Pl and P ′
l .

Solve them to find

P ′
l+1 = xP ′

l + (l + 1)Pl, l = 0, 1, 2, . . . , (10.49a)

P ′
l−1 = xP ′

l − l Pl. l = 1, 2, 3, . . . . (10.49b)
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(d) Using l → l− 1 in Eq. (10.49a) show that

P ′
l = xP ′

l−1 + l Pl−1. (10.50)

Then, substitute Eq. (10.49b) to obtain

(1 − x2)P ′
l = l Pl−1 − xl Pl. (10.51)

Differentiate the above equation and substitute Eq. (10.49b) again to derive the differential equation
for Legendre polynomials as

[

∂

∂x
(1 − x2)

∂

∂x
+ l(l + 1)

]

Pl(x) = 0. (10.52)

Substitute x = cos θ to rewrite the differential equation in the form

[

1

sin θ

∂

∂θ
sin θ

∂

∂θ
+ l(l + 1)

]

Pl(cos θ) = 0. (10.53)

3. (Rodrigues formula for Legendre polynomials.)
The generating function for the Legendre polynomials Pl(x) of degree l is

g(t, x) =
1√

1 + t2 − 2xt
=

∞
∑

l=0

tlPl(x). (10.54)

(a) Using binomial expansion show that

1√
1− y

=

∞
∑

m=0

ym
(2m)!
[

m! 2m
]2 (10.55)

and

(2xt− t2)m =
∞
∑

n=0

m!

n!(m− n)!
(2xt)m−nt2n(−1)n. (10.56)

Thus, show that

1√
1 + t2 − 2xt

=

∞
∑

m=0

m
∑

n=0

tm+n (2m)!

m!n!(m− n)!2m+n
xm−n(−1)n. (10.57)

(b) In Figure 10.1 we illustrate how we change the double sum in m and n to variables l and s. This is
achieved using the substitutions

m+ n = l, (10.58a)

m− n = 2s, (10.58b)

which corresponds to

2m = l+ 2s, m =
l

2
+ s, and n =

l

2
− s. (10.59)

The counting on the variable s, for given l, follows the pattern,

l even : 2s = 0, 2, 4, . . . , l, (10.60a)

l odd : 2s = 1, 3, 5, . . . , l. (10.60b)
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b

b b

b b b

b b b b

b b b b b

b b b b b b

m = 0

m = 1

m = 2

m = 3

m = 4

m = 5

n
=

0

n
=

1

n
=

2

n
=

32s
=
0

2s
=
1

2s
=
2

2s
=
3

2s
=
4

2s
=
5

l =
0

l =
1

l =
2

l =
3

l =
4

l =
5

Figure 10.1: Double summation.

Show that in terms of l and s the double summation can be expressed as

1√
1 + t2 − 2xt

=

∞
∑

l=0

∑

s

tl
(l + 2s)!

(

l
2 + s

)

!
(

l
2 − s

)

!(2s)!2l
x2s(−1)

l
2
−s, (10.61)

where the limits on the sum in s are dictated by Eqs. (10.60) depending on l being even or odd.
Thus, read out the polynomial expression for Legendre polynomials of degree l to be

Pl(x) =
∑

s

(l + 2s)!
(

l
2 + s

)

!
(

l
2 − s

)

!(2s)!2l
x2s(−1)

l
2
−s, (10.62)

where the summation on s depends on whether l is even or odd.

(c) Show that
(

d

dx

)l

xl+2s =
(l + 2s)!

(2s)!
x2s. (10.63)

Thus, show that

Pl(x) =
1

l! 2l

(

d

dx

)l
∑

s

l!
(

l
2 + s

)

!
(

l
2 − s

)

!
xl+2s(−1)

l
2
−s. (10.64)

(d) For even l the summation in s runs from s = 0 to s = l/2, Thus, writing l+2s = 2[l−
(

l
2 − s

)

], show
that

Pl(x) =
1

l! 2l

(

d

dx

)l
l
2
∑

s=0

l!
(

l
2 + s

)

!
(

l
2 − s

)

!
(x2)l−(

l
2
−s)(−1)(

l
2
−s). (10.65)

Then, substituting
l

2
− s = n, (10.66)

show that

Pl(x) =
1

l! 2l

(

d

dx

)l
l
2
∑

n=0

l!

(l − n)!n!
(x2)l−n(−1)n. (10.67)
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Note that the summation on n runs from n = 0 to n = l/2. If we were to extend this sum to n = l
verify that the additional terms will have powers in x less than l. Since the terms in the sum are
acted upon by l derivatives with respect to x these additional terms will not contribute. Thus, show
that

Pl(x) =

(

d

dx

)l
(x2 − 1)l

l! 2l
. (10.68)

Similarly, for odd l the summation is s runs as

2s = 1, 3, 5, . . . , l, (10.69)

or
2s− 1

2
= 0, 1, 2, . . . ,

l− 1

2
. (10.70)

Thus, substituting

s′ =
2s− 1

2
= s− 1

2
, (10.71)

show that

Pl(x) =
1

l! 2l

(

d

dx

)l
l−1

2
∑

s=0

l!
(

l+1
2 + s

)

!
(

l−1
2 − s

)

!
xl+1+2s(−1)(

l−1

2
−s). (10.72)

Substituting
l − 1

2
− s = n (10.73)

and writing
l + 1

2
+ s = l−

(

l− 1

2
− s

)

(10.74)

show that

Pl(x) =
1

l! 2l

(

d

dx

)l
l−1

2
∑

n=0

l!

(l − n)!n!
(x2)l−n(−1)n. (10.75)

Again, like in the case of even l we can extend the sum on n beyond n = (l − 1)/2, because they do
not survive under the action of l derivatives with respect to x. Thus, again, we have

Pl(x) =

(

d

dx

)l
(x2 − 1)l

l! 2l
, (10.76)

which is exactly the form obtained for even l. The expression in Eq. (10.76) is the Rodrigues formula
for generating the Legendre polynomials of degree l.

4. (20 points.) (Orthogonality relations.)
Refer 2022Nov28.

10.2.1 Problems

1. (20 points.) Using Mathematica (or another graphing tool) plot the Legendre polynomials Pl(x) for
l = 0, 1, 2, 3, 4 on the same plot. Note that −1 ≤ x ≤ 1. Based on the pattern you see what can
you conclude about the number of roots for Pl(x). In Mathematica these plots are generated using the
following commands:
Plot[{LegendreP[0,x], LegendreP[1,x], LegendreP[2,x], LegendreP[3,x],

LegendreP[4,x] },{x,-1,1}]
Compare your plots with those in Wikipedia article on ‘Legendre Polynomials’. While there read the
Wikipedia article on Adrien-Marie Legendre and the associated ‘Portrait Debacle’.
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2. (20 points.) Legendre polynomials are conveniently generated using the relation

Pl(x) =

(

d

dx

)l
(x2 − 1)l

2ll!
, (10.77)

where −1 ≤ x ≤ 1. Evaluate Legendre polynomials of degree l = 0, 1, 2, 3, 4 in this manner.

3. (20 points.) Legendre polynomials Pl(x) satisfy the relation

∫ 1

−1

dxPl(x) = 0 for l ≥ 1. (10.78)

Verify this explicitly for l = 0, 1, 2, 3, 4.

4. (20 points.) Legendre polynomials satisfy the differential equation
[

1

sin θ

∂

∂θ
sin θ

∂

∂θ
+ l(l + 1)

]

Pl(cos θ) = 0. (10.79)

Verify this explicitly for l = 0, 1, 2, 3, 4.

5. (20 points.) Legendre polynomials satisfy the orthogonality relation

∫ 1

−1

dxPl(x)Pl′ (x) =
2

2l+ 1
δll′ . (10.80)

Verify this explicitly for l = 0, 1, 2 and l′ = 0, 1, 2. The orthogonality relation is also expressed as
∫ π

0

sin θdθ Pl(cos θ)Pl′ (cos θ) =
2

2l+ 1
δll′ . (10.81)

6. (20 points.) Legendre polynomials satisfy the completeness relation

∞
∑

l=0

2l+ 1

2
Pl(x)Pl(x

′) = δ(x − x′). (10.82)

This is for your information. No work needed. The completeness relation is also expressed as

∞
∑

l=0

2l + 1

2
Pl(cos θ)Pl(cos θ

′) =
δ(θ − θ′)

sin θ
. (10.83)

7. (Example.) The Legendre polynomials of order l are

Pl(x) =

(

d

dx

)l
(x2 − 1)l

2ll!
. (10.84)

In particular,

P0(x) = 1, (10.85a)

P1(x) = x, (10.85b)

P2(x) =
3

2
x2 − 1

2
. (10.85c)

The expansion

F (x, t) =
1√

1− 2xt+ t2
=

∞
∑

l=0

tlPl(x), |t| < 1, (10.86)

is usually referred to as the generating function for Legendre’s polynomials. From it all the properties of
these polynomials may be derived.
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8. (Example.) The Legendre polynomials of order l satisfy the recurrence relation

(2l + 1)xPl(x) = (l + 1)Pl+1(x) + lPl−1(x), l = 1, 2, 3, . . . . (10.87)

Recall,

P0(x) = 1, (10.88a)

P1(x) = x. (10.88b)

Derive the explicit expression for P4(x) using the recurrence relation.

9. (20 points.) Express the function
σ(θ) = cos2 θ (10.89)

in terms of Legendre polynomials.
Solution:

σ(θ) =
2

3
P2(cos θ) +

1

3
P0(cos θ). (10.90)

10. (20 points.) Express the function
σ(θ) = cos 2θ (10.91)

in terms of Legendre polynomials.
Solution:

σ(θ) =
4

3
P2(cos θ)−

1

3
P0(cos θ). (10.92)

11. (20 points.) Legendre polynomials satisfy the completeness relation

n
∑

l=0

Pl(cos θ)Pn−l(cos θ) =
sin(n+ 1)θ

sin θ
. (10.93)

Verify this explicitly for l = 0, 1, 2. Prove this for arbitrary n. No work needed. I have still not attempted
on it.

12. (20 points.) The generating function for the Legendre polynomials Pl(x) of degree l is

g(t, x) =
1√

1 + t2 − 2xt
=

∞
∑

l=0

tlPl(x). (10.94)

Evaluate P11(0) and P12(0).

10.3 Electric potential of 2l-pole

1. (10 points.) The surface charge density on the surface of a charged sphere is given by

σ(θ, φ) =
Q

4πa2
cos2 θ, (10.95)

where θ is the polar angle in spherical coordinates. Express this charge distribution in terms of the
Legendre polynomials. Recall,

P0(cos θ) = 1, (10.96a)

P1(cos θ) = cos θ, (10.96b)

P2(cos θ) =
3

2
cos2 θ − 1

2
. (10.96c)
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2. (10 points.) The induced charge on the surface of a spherical conducting shell of radius a due to a point
charge q placed a distance b away from the center is given by

ρ(r) = σ(θ, φ) δ(r − a), (10.97)

where

σ(θ, φ) = − q

4πa

(r2> − r2<)

(a2 + b2 − 2ab cos θ)
3

2

, (10.98)

where r< = Min(a, b) and r> = Max(a, b). Calculate the dipole moment of this charge configuration
(excluding the original charge q) using

d =

∫

d3r r ρ(r), (10.99)

for the two cases a < b and a > b, representing the charge being inside or outside the sphere. (Hint: First
complete the r integral and the φ integral. Then, for the θ integral substitute a2 + b2 − 2ab cos θ = y.)

3. (20 points.) Consider the electric potential due to a solid sphere with uniform charge density Q. The
angular integral in this evaluation involves the integral

1

2

∫ 1

−1

dt
1

√

r2 + r′2 − 2rr′t
. (10.100)

Evaluate the integral for r < r′ and r′ < r, where r and r′ are distances measured from the center of the
sphere. (Hint: Substitute r2 + r′2 − 2rr′t = y.)

4. (20 points.) Recollect Legendre polynomials of order l

Pl(x) =

(

d

dx

)l
(x2 − 1)l

2ll!
. (10.101)

In particular

P0(x) = 1, (10.102a)

P1(x) = x, (10.102b)

P2(x) =
3

2
x2 − 1

2
. (10.102c)

Consider a charged spherical shell of radius a consisting of a charge distribution in the polar angle alone,

ρ(r′) = σ(θ′) δ(r′ − a). (10.103)

The electric potential on the z-axis, θ = 0 and φ = 0, is then given by

φ(r, 0, 0) =
1

4πε0

∫

d3r′
ρ(r′)

|r− r′|

=
2πa2

4πε0

∫ π

0

sin θ′dθ′
σ(θ′)√

r2 + a2 − 2ar cos θ′
, (10.104)

after evaluating the r′ and φ′ integral.

(a) Consider a uniform charge distribution on the shell,

σ(θ) =
Q

4πa2
P0(cos θ). (10.105)

Evaluate the integral in Eq. (10.104) to show that

φ(r, 0, 0) =
Q

4πε0

1

r>
, (10.106)

where r< = Min(a, r) and r> = Max(a, r).
Note: This was done in class. Nevertheless, present the relevant steps.
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(b) Next, consider a (pure dipole, 2× 1-pole,) charge distribution of the form,

σ(θ) =
Q

4πa2
P1(cos θ). (10.107)

Evaluate the integral in Eq. (10.104) to show that

φ(r, 0, 0) =
Q

4πε0

1

3

1

r>

(

r<
r>

)

. (10.108)

Note: This was done in class. Nevertheless, present the relevant steps.

(c) Next, consider a (pure quadrapole, 2× 2-pole,) charge distribution of the form,

σ(θ) =
Q

4πa2
P2(cos θ). (10.109)

Evaluate the integral in Eq. (10.104) to show that

φ(r, 0, 0) =
Q

4πε0

1

5

1

r>

(

r<
r>

)2

. (10.110)

(d) For a (pure 2l-pole) charge distribution

σ(θ) =
Q

4πa2
Pl(cos θ) (10.111)

the integral in Eq. (10.104) leads to

φ(r, 0, 0) =
Q

4πε0

1

(2l + 1)

1

r>

(

r<
r>

)l

. (10.112)

Note: No work needs to be submitted for this part. We will prove this in class.

5. (20 points.) Calculate the dipole moment

d =

∫

d3r r ρ(r) (10.113)

of a charged spherical shell of radius a with charge density

ρ(r) =
Q

4πa2
P1(cos θ)δ(r − a). (10.114)

6. (20 points.) The surface charge densities on the surface of two separate and independent charged spheres
are given by

σ1(θ, φ) =
Q

4πa2
cos θ, (10.115)

σ2(θ, φ) =
Q

4πa2
cos2 θ, (10.116)

where θ is the polar angle in spherical coordinates. Calculate the total charge on each sphere by integrating
over the surface of each sphere.
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10.4 Multipole expansion

1. (20 points.) Consider a configuration of charges q1, q2, q3, . . . , at positions r1, r2, r3, . . . , and let r0 be an
arbitrary point in space. Define the postion vector of the charges with respect to r0 to be

Ri = ri − r0. (10.117)

The monopole moment, the dipole moment, and the quadrupole moment of this configuration is given by

Q = q1 + q2 + q3 + . . . , (10.118a)

d = q1R1 + q2R2 + q3R3 + . . . , (10.118b)

q = q1(3R1R1 −R2
11) + q2(3R2R2 −R2

21) + q3(3R3R3 −R2
31) + . . . , (10.118c)

respectively. Evaluate the monopole moment, the dipole moment, and the quadrupole moment of three
identical charges, each having charge q, positioned on the x axis at a, 2a, and 3a, respectively.

2. (20 points.) Given the quadrupole tensor

q = q1(3R1R1 −R2
11) + q2(3R2R2 −R2

21) + q3(3R3R3 −R2
31) + . . . , (10.119)

show that
trq = 0. (10.120)

3. (20 points.) The monopole moment, the dipole moment, and the quadrupole moment, of a charge
distribution ρ(r) is given by

Q =

∫

d3r ρ(r), (10.121a)

d =

∫

d3r ρ(r) r, (10.121b)

q =

∫

d3r ρ(r)
[

3rr− r21
]

, (10.121c)

respectively. Consider a charge distribution consisting of a single point charge. If it is placed at the origin
calculate the monopole moment, dipole moment, and quadrupole moment, of the charge distribution.
Repeat the calculation if the position of the point charge is (a, 0, 0).

4. (20 points.) Show that a configuration consisting of three charges with zero electric monopole moment
and zero electric dipole moment is collinear.
Hint: Let the three charges be q1, q2, and q3, and their positions be r1, r2, and r3, respectively. Show
that we can express (r1 − r3) = a(r1 − r2) and (r2 − r3) = b(r1 − r2). Find a and b.

5. (20 points.) We have three charges q1, q2, and q3, at positions r1, r2, and r3, respectively. If the
configuration has zero electric monopole moment and zero electric dipole moment, then show that the
three charges are collinear. Further, show that the electric quadrupole moment of the configuration is

q = qh

[

3(r1 − r2)(r1 − r2)− (r1 − r2) · (r1 − r2)1
]

. (10.122)

where qh is the harmonic mean of q1 and q2 given by

1

qh
=

1

q1
+

1

q2
. (10.123)

6. (20 points.) Two charges with charge +q and −q are placed at positions r1 and r2. Find the monopole
moment and the dipole moment of this configuration of two charges. Is the dipole moment independent
of the choice of origin? Is the dipole moment independent of the orientation of the coordinate axis?
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7. (20 points.) Two charges with charge +q each are placed at (a, 0, 0) and (−a, 0, 0). A third charge with
charge −2q is placed at the origin. Find the monopole moment, the dipole moment, and the quadrupole
moment, of this configuration of the two charges.

8. (20 points.) Two electrons and two protons are placed at the corners of a square of length a, such that
the electrons are at diagonally opposite corners. For simplicity let us choose them to be in the xy plane.
Find the monopole moment, the dipole moment, and the quadrupole moment, of this configuration of four
charges. Do these moments depend on the orientation of the square in the xy plane?

9. (20 points.) Two electrons and two protons are placed at the corners of a rectangle of length a and
width b, such that the electrons are at diagonally opposite corners. For simplicity let us choose them to
be in the xy plane. Find the monopole moment, the dipole moment, and the quadrupole moment, of this
configuration of four charges. Do these moments depend on the orientation of the rectangle in the xy
plane?

10. (20 points.) A positive charge q is placed at (a, 0, 0). Two negative charges of charge −q each are
placed at (−a/2, a

√
3/2, 0) and (−a/2,−a

√
3/2, 0). Find the monopole moment, dipole moment, and the

quadrupole moment, of this configuration of charges.

11. (20 points.) Two charges, each with charge +q, are placed at positions r1 = a î and r2 = a ĵ. A third
charge with charge −2q is placed at the origin. Find the monopole moment and the dipole moment of
this configuration of three charges.

12. (20 points.) Two charges, each with charge +q, are placed at positions r1 = a î and r2 = a ĵ. Another set

of two charges, each with charge −q, are placed at positions r3 = −a î and r4 = −a ĵ. Find the monopole
moment, the dipole moment, and the quadrupole moment, of this configuration of four charges.

13. (20 points.) Evaluate the monopole moment, the dipole moment, and the quadrupole moment of count-
able infinite identical charges, each having charge q, positioned on the x axis at a, a/2, a/3, . . . , respectively.
Hint: Express the moments in terms of the Riemann zeta function ζ(s), which is well defined and finite
for the particular values of s here.

10.5 Electric potential

1. (40 points.) Find the electric potential due to a uniformly charged ring of radius a and total charge Q
everywhere.

(a) Let the ring be infinitely thin. Let it be placed on the x-y plane with its center at the origin. Show
that the charge density for the ring in spherical coordinates can be expressed in the form

ρ(r′) =
Q

2πa

δ
(

θ′ − π
2

)

r′
δ(r′ − a). (10.124)

Verify that
∫

d3r′ρ(r′) = Q.

(b) Using symmetry argue that the electric potential has no dependence in the azimuth angle φ. Thus,

φ(r) = φ(r, θ). (10.125)

We will obtain a solution for the electric potential as an expansion in Legendre polynomials.

(c) Starting from

φ(r) =
1

4πε0

∫

d3r′
ρ(r′)

|r− r′| (10.126)

find the solution for the electric potential on the z axis (where θ = 0) to be

φ(r, 0) =
1

4πε0

Q√
a2 + r2

. (10.127)
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Using the binomial expansion

1√
1 + x2

=
∞
∑

n=0

x2n
(−1)n

22n
(2n)!

(n!)2
(10.128)

express the electric potential on the z axis in the form

φ(r, 0) =
1

4πε0

Q

r>

∞
∑

n=0

(

r<
r>

)2n
(−1)n

22n
(2n)!

(n!)2
, (10.129)

where r< = Min(r, a) and r> = Max(r, a).

(d) Let the Legendre expansion of the electric potential be

φ(r, θ) =
1

4πε0

Q

a

∞
∑

l=0

Al(r)Pl(cos θ). (10.130)

The electric potential satisfies the Laplacian

−∇2φ = 0 (10.131)

for points not on the ring. Using the Laplacian in spherical coordinates and the differential equation
satisfied by the Legendre polynomials, deduce the differential equation for the coefficients Al(r) to
be

[

1

r2
∂

∂r
r2
∂

∂r
− l(l+ 1)

r2

]

Al(r) = 0. (10.132)

Show that

Al(r) = αl

( r

a

)l

+ βl

(a

r

)l+1

. (10.133)

Thus, the Legendre expansion for the electric potential is

φ(r, θ) =
1

4πε0

Q

a

∞
∑

l=0

[

αl

( r

a

)l

+ βl

(a

r

)l+1
]

Pl(cos θ). (10.134)

Requiring the boundary condition that the electric potential be zero for r → ∞ and is finite at r = 0,
show that

φ(r, θ) =























1

4πε0

Q

a

∞
∑

l=0

αl

( r

a

)l

Pl(cos θ), r < a,

1

4πε0

Q

r

∞
∑

l=0

βl

(a

r

)l

Pl(cos θ), a < r.

(10.135)

(e) Using Eq. (10.135), we have

φ(r, 0) =























1

4πε0

Q

a

∞
∑

l=0

αl

( r

a

)l

, r < a,

1

4πε0

Q

r

∞
∑

l=0

βl

(a

r

)l

, a < r.

(10.136)

where we used Pl(1) = 1. Comparing Eqs. (10.129) and (10.136) show that

αl = βl =







0 l = 1, 3, 5, . . . ,
(−1)n

22n
(2n)!

(n!)2
, l = 2n, n = 0, 1, 2, . . . .

(10.137)

Thus, show that

φ(r, θ) =
1

4πε0

Q

r>

∞
∑

n=0

(−1)n

22n
(2n)!

(n!)2

(

r<
r>

)2n

P2n(cos θ). (10.138)
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2. (40 points.) Let us consider a uniformly charged circular disc of radius a and total charge Q. Let the
disc be infinitely thin. Let it be placed on the x-y plane with its center at the origin.

(a) Show that the charge density for the disc in spherical coordinates can be expressed in the form

ρ(r′) =
Q

πa2
δ
(

θ′ − π
2

)

r′
θ(a− r′). (10.139)

Verify that
∫

d3r′ρ(r′) = Q.

(b) Using symmetry argue that the electric potential has no dependence in the azimuth angle φ. Thus,

φ(r) = φ(r, θ). (10.140)

Our goal here will be to obtain a solution for the electric potential as an expansion in Legendre
polynomials.

(c) Starting from

φ(r) =
1

4πε0

∫

d3r′
ρ(r′)

|r− r′| (10.141)

find the solution for the electric potential on the z axis (where θ = 0) to be

φ(r, 0) =
1

4πε0

2Q

a2

[

√

a2 + r2 − r
]

. (10.142)

Using the binomial expansion

√

1 + x2 = 1 +

∞
∑

n=1

x2n
(−1)n−1

2n

[2(n− 1)]!

22(n−1)[(n− 1)!]2
(10.143)

express the electric potential on the z axis in the form

φ(r, 0) =



























1

4πε0

2Q

a

[

1− r

a
+

∞
∑

n=1

(−1)n−1

2n

[2(n− 1)]!

22(n−1)[(n− 1)!]2

( r

a

)2n
]

, r < a,

1

4πε0

2Q

r

∞
∑

n=0

(−1)n

2(n+ 1)

(2n)!

22n(n!)2

(a

r

)2n

, a < r.

(10.144)

(d) Let the Legendre expansion of the electric potential be

φ(r, θ) =
1

4πε0

2Q

a

∞
∑

l=0

Al(r)Pl(cos θ). (10.145)

The electric potential satisfies the Laplacian

−∇2φ = 0 (10.146)

outside the disc. Using the Laplacian in spherical coordinates and the differential equation satisfied
by the Legendre polynomials, deduce the differential equation for the coefficients Al(r) to be

[

1

r2
∂

∂r
r2
∂

∂r
− l(l+ 1)

r2

]

Al(r) = 0. (10.147)

Show that

Al(r) = αl

( r

a

)l

+ βl

(a

r

)l+1

. (10.148)
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Thus, the Legendre expansion for the electric potential is

φ(r, θ) =
1

4πε0

2Q

a

∞
∑

l=0

[

αl

( r

a

)l

+ βl

(a

r

)l+1
]

Pl(cos θ). (10.149)

Requiring the boundary condition that the electric potential be zero for r → ∞ and is finite at r = 0,
show that

φ(r, θ) =























1

4πε0

2Q

a

∞
∑

l=0

αl

( r

a

)l

Pl(cos θ), r < a,

1

4πε0

2Q

r

∞
∑

l=0

βl

(a

r

)l

Pl(cos θ), a < r.

(10.150)

(e) Using Eq. (10.150), we have

φ(r, 0) =























1

4πε0

2Q

a

∞
∑

l=0

αl

( r

a

)l

, r < a,

1

4πε0

2Q

r

∞
∑

l=0

βl

(a

r

)l

, a < r.

(10.151)

where we used Pl(1) = 1. Comparing Eqs. (10.144) and (10.151) show that

αl =



























1 l = 0,

−1 l = 1,

0 l = 3, 5, 7, . . . ,
(−1)n−1

2n

[2(n− 1)]!

22(n−1)[(n− 1)!]2
, l = 2n, n = 1, 2, 3, . . . ,

(10.152)

and

βl =







0 l = 1, 3, 5, . . . ,
(−1)n

2(n+ 1)

(2n)!

22n(n!)2
l = 2n, n = 0, 1, 2, 3, . . . .

(10.153)

Thus, show that

φ(r, θ) =



























1

4πε0

2Q

a

[

1− r

a
P1(cos θ) +

∞
∑

n=1

(−1)n−1

2n

[2(n− 1)]!

22(n−1)[(n− 1)!]2

( r

a

)2n

P2n(cos θ)

]

, r < a,

1

4πε0

2Q

r

∞
∑

n=0

(−1)n

2(n+ 1)

(2n)!

22n(n!)2

(a

r

)2n

P2n(cos θ), a < r.

(10.154)

(f) For r ≪ a the disc should simulate a plate of infinite extent. Show that

φ(r, θ) =
1

4πε0

2Q

a

[

1− z

a

]

+O
(z

a

)2

, (10.155)

using rP1(cos θ) = z. This leads to the electric field for a plate of infinite extent,

E(r) = −∇φ = ẑ
σ

2ε0
, (10.156)

where σ = Q/(πa2).
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