Homework No. 02 (2026 Spring)

PHYS 510: CLASSICAL MECHANICS

School of Physics and Applied Physics, Southern Illinois University—Carbondale
Due date: Tuesday, 2026 Jan 27, 4.30pm

0. (Resource, No submission needed.) The following classroom lecture from Spring 2024,

https://youtu.be/x05ZdUxz0Ko,

serves as a good resource for functional derivative.
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In discrete multi-variable calculus we have a function
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evaluated in such a way that the variation in 37 is independent of a variation in 3® unless i = j, that
is,
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where 6,7 is the Kronecker delta symbol.

In continuous multi-variable calculus we have a functional
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such that for each x we have the derivative
OFfy] _ . Fly+Ay) - Fly) T
dy(z)  Ay(z)—0 Ay(z)

evaluated in such a way that the variation in y(z’) is independent of a variation in y(z) unless z = 2/,

that is,
dy(z’)
6y(z)

where 6(z — 2') is the Dirac delta function.
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The vector form of the fundamental functional derivative is
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https://youtu.be/x05ZdUxzOKo

As an illustration, we evaluate the functional derivative
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where r(s) is the magnitude of the vector r(s), as
| 0 1
— = (11a)
Se(3) 7(5)  5(5) Vil 2 ()
_ 1 21(s) . 51‘(5/) (11b)
2 (x(s) - x(s))z  or(s’)

O

= r(s)35($ s'). (11c¢)
. (20 points.) The principal identity of functional differentiation is
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which states that the variation in the function u at x is independent of the variation in the function u at
7' unless z = x’. This is a generalization of the identity in multivariable calculus
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which states that the variables u’ and u’ are independent unless i = j. Using the property of d-function,
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derive the following identities by repeatedly differentiating by parts.
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3. (20 points.) [Refer: Gelfand and Fomin, Calculus of Variations.] Evaluate the functional derivative
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4. (20 points.) Evaluate the functional derivative
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of the following functionals, assuming no variation at the end points. Given a(x) is a known function.
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of the following functionals, with u replaced with the appropriate variable, assuming no variation at the
end points.
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Let z(t) be position at time ¢ of mass m. The action
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Let z(t) be the vertical height at time ¢ of mass m in a uniform gravitational field g. The action
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is a functional of the vertical height.

is a functional of position.

Let z(t) be the stretch at time ¢ of a spring of spring constant k attached to a mass m. The action
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Let r(t) be the radial distance at time ¢ of mass m released from rest in a gravitational field of a
planet of mass M. The action
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is a functional of the radial distance.

is a functional of the stretch.
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Let r(t) be the radial distance at time ¢ of charge ¢; of mass m released from rest in an electrostatic
field of another charge of charge ¢2. The action
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is a functional of the radial distance.




