Homework No. 03 (2026 Spring)

PHYS 510: CLASSICAL MECHANICS

School of Physics and Applied Physics, Southern Illinois University—Carbondale
Due date: Thursday, 2026 Feb 05, 4.30pm

1. (20 points.) Fermat’s principle in ray optics states that a ray of light takes the path of least time between

two given points. Derive Snell’s law,
n(a) sinf(z) = n, (1)

where 7 is a constant, starting from Fermat’s principle, for a stratified medium. Here n(z) is the refractive
index and #(x) is the angle the trajectory of light makes with respect to the z axis.

2. (20 points.) Snell’s law for refraction for stratified (layered) medium states that
n(z)sinf(z) = n, (2)
where 7 is a constant. Show that Snell’s law can be rewritten in the form

dy _ " (3)
&~

(a) Let us consider a medium with refractive index (z1 = a)

1, z<a, A
n(@) = E, a<z. )
a
Solve the corresponding differential equation, by substituting x = nacosht, to obtain
1
y(z) —yo = nacosh™* (—E) , a <. (5)
na

The path in this medium satisfies the equation of a catenary. It is also useful to express the solution
in terms of the logarithm as

2
1 1
y(x) —yo =naln 2y (—E> -1, a<z. (6)
na na
(b) For initial conditions, (z1 = a,)
dy /
y(x1) =y and - =y (7)
dz |,
show that integration constants are determined as
1 1 !
yo_yl—naln{——l— —2—1}, and n:%. (8)
T L+
Thus, write the solution as
1lx 1 22
a 7% a?
y(@) —y=naln | — - . a<uz. (9)
-t/ -1
n n



(c) For the special case y; = 0 and y} — oo show that n = 1 and

T [ z2
E-‘r §—1‘|, a<ux. (10)

3. (20 points.) Find the geodesics on the surface of a circular cylinder. Identify these curves. Hint: To
have a visual perception of these geodesics it helps to note that a cylinder can be mapped (or cut open)
into a plane.

y(z) =aln

(a) The distance between two points on the surface of a cylinder of radius a is characterized by the
infinitesimal statement

ds® = a*d¢* + dz*>. (11)

(b) The geodesic is the extremal of the functional

(¢2,22) @2
l[z] = / ds = / adgy[1 + l% (12)
(¢1,21) 1 d¢

(c) Since the curve passes through the points (21, ¢1) and (22, ¢2) we have no variations on the end
points. Thus, show that

1dz
l[z] __d a do ' (13)
6z(¢) do 1dz\2
1 faliad
+(i%)
(d) Using the extremum principle
8l[z]
=0 14
52(0) )
show that the differential equation for the geodesic is
1dz
E% = C1, (15)

where ¢ is a contant.

(e) Solve the differential equation. Identify the curve described by the solution to be a helix. Illustrate
a particular curve using a diagram.

4. (20 points.) Consider a rope of uniform mass density A = dm/ds hanging from two points, (z1,y1) and
(z2,y2), as shown in Figure 1. The gravitational potential energy of an infinitely tiny element of this rope
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Figure 1: Problem 4.

at point (z,y) is given by
dU = dm gy = Agds y, (16)



where

ds® = dx® + dy?. (17)
A catenary is the curve that the rope assumes, that minimizes the total potential energy of the rope.

(a) Show that the total potential energy U of the rope hanging between points x; and s is given by

(z2,y2) Y2 dr\ 2
Ulz] = )\g/ yds = )\g/ dyyr/1+ (—> . (18)
(z1,91) Y1 dy

(b) Since the curve passes through the points (x1,y1) and (z2,y2), we have no variations at these (end)
points. Thus, show that

dx
6U ] d dy
0x(y) A - 2 (19)
Y Y - dx
dy
(¢) Using the extremum principle show that the differential equation for the catenary is
d
e — (20)
dy /y2 — a2
where «a is an integration contant.
(d) Show that integration of the differential equation yields the equation of the catenary
yzacoshx_xo, (21)
a
where z( is another integration constant.
(e) For the case y1 = y2 we have
N cosh 2= xO, (22a)
a a
v _ coshw, (22b)
a
which leads to, assuming x1 # xo,
o = T1t T2 . (23)
2
Identify z in Figure 1. Next, derive
Y1 Y2 T2 — T1
22— 22 — ¢osh 24
a a o8 2a (24)

which, in principle, determines a. However, this is a transcendental equation in a and does not allow
exact evaluation of a in closed form and one depends on numerical solutions. Observe that, if x = xg
in Eq. (21), then y = a. Identify a in Figure 1.



