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Chapter 1

Newton’s laws of motion

1.1 Position dependent forces

1. (20 points.) Radial free fall of a meteoroid. Refer 20210121 video.

2. (20 points.) (Refer Landau and Lifshitz, Problem 1 in Chapter 3.) A simple pendulum consists of a
particle of mass m suspended by a massless rod of length [ in a uniform gravitational field g.

()

Identify the two forces acting on the pendulum to be the force of gravity mg and the force of tension
T. Thus, deduce the Newton equation of motion to be

ma=mg+ T, (1.1)

where a is acceleration of mass m. Starting from Eq.(1.1) derive the equation of motion for the
simple pendulum

d*¢ )
Tz —w? sin ¢, (1.2)
where
2w g
_2r_ ]9 1.3
T TV (13)
Starting from Eq. (1.2) derive the statement of conservation of energy for this system,
1 .
§ml2¢2 — mgl cos ¢ = constant. (1.4)

Hint: Multiply Eq. (1.2) by (b and express the equation as a total derivative with respect to time.
For initial conditions ¢(0) = ¢o and ¢(0) = 0 show that

1 .
5m12¢2 — mgl cos ¢ = —mgl cos ¢y. (1.5)

Thus, derive
“_1 »
To 27 \/2(cos ¢ — cos ¢p)

where Ty = 2m4/1/g.

The time period of oscillations of the simple pendulum is equal to four times the time taken between
¢ =0 and ¢ = ¢g. Thus, show that

b0
-4 dé (1.7)
21 Jo  /2(cos ¢ — cos ¢p)
b0
_ b (1.8)

d¢
T Jo 1/sin2% —sinzg
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Then, substitute sind = sin(¢/2)/sin(¢o/2) to determine the period of oscillations of the simple
pendulum as a function of the amplitude of oscillations ¢g to be

2 (.
T="T, ;K (sm%) , (1.9)
where B
K(k) = /2 B (1.10)
0 V1—k2sin?0

is the complete elliptic integral of the first kind.

Using the power series expansion

o[ en) 77,
K(k) = 52 s |k (1.11)
show that for small oscillations (¢p/2 < 1)

_ 3

T=T|1+—=+...]. (1.12)
16

Estimate the percentage error made in the approximation T ~ T for ¢g ~ 60°.

Plot the time period T of Eq. (1.9) as a function of ¢y. What can you conclude about the time period
for ¢pg = w?

3. (20 points.) Assume Earth to be a solid spherical ball of uniform density. Neglect the influence of
all other stars and galaxies. Consider a hypothetical tunnel passing through the center of Earth and
connecting two diameterically opposite points on the surface of Earth by a straight line. Ignore friction
and the rotational motion of Earth. Use the mass of Earth to be 6.0 x 102*kg, radius of Earth to be
6.4 x 10° m. Newton’s gravitational constant is 6.7 x 1071 Nm? /kg?.

(a)

Show that the gravitational field is

_GM 1

r =R for r <R,
g(r) = o (1.13)
—T—, for R<r,
r

where G is Newton’s gravitational constant and I are unit vectors radiating out from the center of
Earth. Plot the magnitude of g(r) as a function of . Evaluate the gravitational field on the surface
of Earth,

GM
R2’
to significant digits, presuming that the gravitational field is continuous at the surface. Note that we
could model (undetectable) exotic matter with usual mass to exist only close to the surface of Earth
using a d-function field, which we shall not attempt here.

g= (1.14)

The gravitational potential associated with the gravitational field is given by the differential statement

g(r) = =Vo(r), (1.15)

or the integral statement
—d¢ =g - dr. (1.16)
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(f)

Thus, determine the gravitational potential

1GM r?
5??4_61, fOI' 'I"<F€7
o(r) = o (1.17)
——— + c9, for R<r.
T

Determine the arbitrary integration constant ce by choosing the gravitational potential to be zero at
r — o0o. Requiring the gravitational potential to be continuous at the surface show that

3GM
Plot the gravitational potential with respect to r using a graphing software. Ponder if there is
flexibility here while investigating exotic matter, which we shall not attempt here.
Consider the free fall from a great distance, say infinity, of an object starting from rest. Determine

it’s velocity when it reaches the surface of Earth. This is the escape velocity of Earth,

ve = /29R. (1.19)

Consider a free fall starting from rest at the surface of Earth, in a frictionless tunnel passing through
the center of Earth. Find it’s velocity as it crosses the center of Earth to be
Ve

V2

Consider a free fall starting from rest at infinitely large distance falling along a radial line aligned
with the tunnel. Find it’s velocity as it crosses the center of Earth to be

(1.20)

v =

= Ver/ =. 1.21
v =0 5 ( )

Is the time taken for these free falls and escape scenarios finite? In particular, try to evaluate the
time taken to escape the gravitational field of Earth.

4. (20 points.) Assume Earth to be a solid spherical ball of uniform density. Consider a hypothetical tunnel
passing through the center of Earth and connecting two points on the surface of Earth by a straight line.
Determine the time taken, (in minutes) to two siginificant digits, starting from rest, to travel from one
point to the other, when a mass is dropped at one end of the tunnel. Ignore friction and the rotational
motion of Earth. Use the mass of Earth to be 6.0 x 10?*kg, radius of Earth to be 6.4 x 10m. Newton’s
gravitational constant is 6.67 x 10711 Nm? /kg?.

A more realistic density profile of Earth is

where

po, for r< %,
r) = 1.22
p(r) {%po, for §<7‘<R, ( )
16 M
PO = 5 Iz p3° (1.23)
9 ZR3

where R is the radius of Earth and M is the mass of Earth. Show that the above density profile leads to
the following profile for the gravitational field for Earth,

16 GMr

_§F7 for r<

57
2
g(r) = _8GM1 %4_ R
9 RZ2|R 2r
GM

_7‘—27 for R<T,

R
, for ) <r <R, (1.24)
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where G is Newton’s gravitational constant. Plot g(r) as a function of r. Approximate the above gravi-
tational field as

_GM2r for r< —
R R’ 2’
GM R
g(r) = — s for S <r<R (1.25)
—G—2M, for R<r.
,

Plot the approximate gravitational field and compare it with the exact version. Argue that it is accurate
to about ten percent. Determine the new time taken, (in minutes) to two siginificant digits, starting from
rest, to travel from one point to the other, when a mass is dropped at one end of the tunnel. Ignore
friction and the rotational motion of Earth.

Refer: The gravity tunnel in a non-uniform Earth, by Alexander R. Klotz, Am. J. Phys. 83 (2015) 231;
arXiv:1308.1342.

Velocity dependent forces

. (20 points.) The force for linear drag is

F = —bv. (1.26)

For a mass m falling under uniform gravity in the presence of linear drag, with velocity chosen to be
positive for upward direction, we have the equation of motion

dv

m— = —mg — bv. (1.27)

For the case when the mass is moving vertically down, as the mass falls it gains speed and the drag force
eventually balances the force of gravity, and from this point on it does not accelerate. Thus, the terminal
velocity is defined by requiring dv/dt = 0, that is,

op = % (1.28)

downwards. The equation of motion can be solved for the initial condition of the particle starting from
rest, v(0) = 0, which leads to the solution

o(t) = vp (e_? - 1), (1.29)

where
r=2 (1.30)

sets the scale for time in the problem and is illustrated in Figure 1.1.
(a) Evaluate the solution for the initial condition
v(0) = 4vrp (1.31)

corresponding to the case when the mass is thrown upwards with terminal velocity. Plot the velocity
as a function of time for this case in Figure 1.1.

(b) Calculate the time when the mass reaches the highest point.


http://aapt.scitation.org/doi/full/10.1119/1.4898780
https://arxiv.org/abs/1308.1342
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_— —

e e e

Figure 1.1: Velocity as a function of time for a mass starting from rest.

2. (20 points.) Consider the case when the friction force is quadratically proportional to velocity,
1 2
Fr = EDpAv , (1.32)

where A is the area of crosssection of the object, p is the density of the medium, and D is a dimensionless
drag coefficient. This should be contrasted with the case when the drag is linear in velocity. Typically,
for small speeds, or when the size of the object is small, the drag force is linear in velocity. This is the
case for motion in a highly viscous fluid, or for micron sized organisms in water. On the other hand, a
sky diver, or a car on an interstate, experience quadratic drag forces.

(a) For a mass m falling under uniform gravity we have the equation of motion

dv
— = — Fy. 1.33
m = mg — Iy (133)

(b) Show that the terminal velocity, when dv/dt = 0, is given by

2mg
=4/=- 1.34
(% DpA ( 3)

(c) Solve the equation of motion for the initial condition where the particle starts from rest, v(0) = 0,
and show that it leads to the solution

(.
v(t) = vr (re o) (1.35)
where 7 = vy /g sets the scale for time.
(d) The corresponding solution for linear drag is
o(t) :vT(l—e*%), (1.36)

where now Fy = bv and vy = %2 with 7 = vr/g. Plot and compare the two velocity functions

assuming the same terminal velocities.
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3. (20 points.) Electric charge in a uniform magnetic field. Refer 20210121 video.

4. (20 points.) Motion of a charged particle of mass m and charge ¢ in a uniform magnetic field B and a
uniform electric field E is governed by

d
md—‘tfqu—i—qva. (1.37)

Choose B along the z-axis and E along the y-axis,
B = 0i+0j+ Bk, (1.38a)
E=0i+Ej+0k (1.38D)

Solve this vector differential equation to determine the position x(¢) and velocity v(t) of the particle as a
function of time, for initial conditions

x(0) = 0i+0j+ 0k, (1.39a)
v(0) = 0i4+0j+0k. (1.39b)

Verify that the solution is a cycloid characterized by the equations

x(t) = R(wet — sinwet), (1.40a)
y(t) = R(1 — coswet). (1.40b)
where £ B
q
o YT (1.41)

The particle moves as though it were a point on the rim of a wheel of radius R perfectly rolling (without
sliding or slipping) with angular speed w. along the x-axis. It satisfies the equation of a circle of radius R
whose center (vt, R,0) travels along the a-direction at constant speed v,

(x —vt)* + (y — R)? = R?, (1.42)

where v = w.R.



Chapter 2

Calculus of variations

2.1 Functional derivative
1. (Resource:) The following classroom lecture from Spring 2024,
https://youtu.be/x05ZdUxz0Ko,

serves as a good resource for functional derivative.

2. Give an account of the fundamental functional derivative

ou(x)
=§(x = 2. 2.1
fu =0 =) (21)
Observe that dimensional consistency requires
) } 1
— = —. (2.2)
[M(x) [u][z]
3. In discrete multi-variable calculus we have a function
f) (2.3)
dependent on variables .
y', i=1,2,..., (2.4)
such that for each i we have the derivative
9 i Ay —
8(1]1 Ayt—0 Ayz

evaluated in such a way that the variation in 37 is independent of a variation in y* unless i = j, that is,

J .
gzi =47, (2.6)

where 6,7 is the Kronecker delta symbol.

In continuous multi-variable calculus we have a functional
Fly] (2.7)

dependent on functions
y(x), 1 < T < Tg, (2.8)

11


https://youtu.be/x05ZdUxzOKo
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such that for each z we have the derivative

0Flyl _ ., Fl+Ay) - Fy)
oy(x) o Ayl(z)ﬂ() Ay(x) (2.9)

evaluated in such a way that the variation in y(z’) is independent of a variation in y(z) unless x = 2/,
that is,

W) _ 5p o, (2.10)

where §(z — 2’) is the Dirac delta function.

. (20 points.) The vector form of the fundamental functional derivative is

or(s) _ /
or(s) 16(s — &'). (2.11)
As an illustration, we evaluate the functional derivative
1) 1
— 2.12
or(s’) r(s)’ ( )
where 7(s) is the magnitude of the vector r(s), as
0 1 0 1
— = 2.13a
or(s') 1(s)  or(s) \/x(s) - x(s) (2.132)
_ 1 2r(s) i 61‘(5/) (2.13D)
2 (r(s) - x(s))> r(s')
o) oy
= r(s)35(s s'). (2.13¢)
2.1.1 Problems
1. (20 points.) The principal identity of functional differentiation is
du(z) /
Sale) O(x — '), (2.14)

which states that the variation in the function w at x is independent of the variation in the function u at
2’ unless x = ’. This is a generalization of the identity in multivariable calculus

J .
% =47, (2.15)

which states that the variables u’ and u/ are independent unless i = j. Using the property of d-function,
/ dra(z)é(x —2') = a(2'), (2.16)

derive the following identities by repeatedly differentiating by parts.

(a)

/700 dxa(x)%&(x —a') = —%a(m') (2.17)
(b) [eS) d2 d2
[ dz a(a:)@(S(:c —a2') = —I—Wa(x’) (2.18)
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(©)
o] 3 3
/_ dxa(:v)%&(x —a') = _dcgic’g a(z’) (2.19)
(@ - .
L dx a(x)@(S(x —a') = (—1)"Wa(x’) (2.20)

2. (20 points.) Evaluate the functional derivative

0 F [u)
e (2.21)
of the following functionals, assuming no variation at the end points.
(a)
Flu) :/ dx a(z)u(z) (2.22)
(b)
Flu] = / dx a(x)u(x)? (2.23)
(©)
Flu] = / : dz /14 u(x)? (2.24)
(d)
Flu] = / dz [u(x) + a(a:)] [u(a:) + b(x)} (2.25)
(e)
Flu] = /12 dz _a@u(@) (2.26)

. [1 n b(x)u(z)}
3. (20 points.) [Refer: Gelfand and Fomin, Calculus of Variations.] Evaluate the functional derivative

dF[y|

0 (2.27)
of the following functionals, assuming no variation at the end points.
(@ .
Fly] = /O d ﬁ (2.28)
() .
Fly] = / dz a(z) yd(;) (2.29)
)
© -
Fly] = /0 da:y% (2.30)
(d)

F[y]z/o d:mcyd— (2.31)
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(e)
Fly] = /ab i—f (%)2 (2.32)

4. (20 points.) Evaluate the functional derivative

OF[u]
du(x)

Flu] = /ab dzuyf1+ (3—3)2, (2.34)

assuming no variation at the end points.

(2.33)

of the following functional,

5. (20 points.) Using ab initio method, evaluate the functional derivative

0 F [u)
du(x)

(2.35)

of the following functional,

b 3
d 2
Flu] = / dz [1 +b(z) “(I)} , (2.36)
assuming no variation at the end points.
6. (20 points.) Evaluate the functional derivative

OF[u]
du(x)

(2.37)

of the following functionals, assuming no variation at the end points. Given a(x) is a known function.

(a)

Flu] = /m m dz a(z) {1 + dZix) + dz;(f ) 4 dzz(f ) } (2.38)
(b) \ )
Flu] = /a dx ng) (2.39)

(c)
d3u
da3

b
du  d3u
F[u]—/a dryf1+ 5+ (2.41)

7. (20 points.) Evaluate the functional derivative

F[u]:/bdx:v5 1+ (2.40)

(d)

W [u]
du(t)

(2.42)

of the following functionals, with u replaced with the appropriate variable, assuming no variation at the
end points.
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(a)

Let x(t) be position at time ¢ of mass m. The action
2 dz >
Wlz] = dt —m | — 2.43
ol = [ argm (%) (2.43)

Let z(t) be the vertical height at time ¢ of mass m in a uniform gravitational field g. The action

wie = [t 3 (5) - e 24

is a functional of the vertical height.

is a functional of position.

Let x(t) be the stretch at time ¢ of a spring of spring constant k attached to a mass m. The action
ta 2
1 dz 1
Wiz]= [ dt|=m(— | —zka? 2.45
[«] /t1 [2m(dt) 5 x] (2.45)

Let r(t) be the radial distance at time ¢ of mass m released from rest in a gravitational field of a

planet of mass M. The action
t2 1 dr\?> GMm
Wir| = dt | = —
"] /t1 [2m (dt) + r

is a functional of the radial distance.

is a functional of the stretch.

(2.46)

Let r(t) be the radial distance at time ¢ of charge ¢; of mass m released from rest in an electrostatic
field of another charge of charge ¢2. The action

t2 1 dr\? 1 qiqeo
= dt | = — | - = 2.4
wir] /t1 [2 " ( dt ) dmeg T (247)

is a functional of the radial distance.

8. (20 points.) Let us investigate the fundamental identity of functional differentiation,

5f(x) /
=d(x — 2.48
50y = e =), (2.43)
in the context of Fourier tranformation
®dk . =
fa) = [ SE e, (2.499)
oo 2m
f(k) = / dz e f (). (2.49b)
Observe that the above Fourier transformation implies the d-function representation
< dk /
Sz —a') = — eikle=ah), 2.50
@-d)= [ G (2.50)

Interpreting Eq. (2.49a) as a functional in f show that

6f((E) _ i eikm
S e (2.51)
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11.

12.

13.
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Similarly, interpreting Eq. (2.49b) as a functional in f show that

6f(k) e—ik}LE'

6f(x)

Using these results in the functional chain rule

0f (x) /°° i 07 (@) 37(k)

of (")

obtain the fundamental identity in Eq. (2.48).

oo Of(k)Sf(2")

. (20 points.) The eletrostatic energy of a charge distribution p(r) is

Elp] = %/d3r/d3r’ 7p|(:)_p(:;])

°FE
dp(r)p(r’)”

(20 points.) Consider the action, in terms of the Lagrangian viewpoint,

Wix] = /tt dt [%m (%)2 _Ux,1)

Assume no variation at the end points ¢; and t2. Evaluate the functional derivative

Evaluate

oW

ox(t)
(20 points.) Consider the action, in terms of the Hamiltonian viewpoint,

dx  p?

ta
Wx,p:/ dt[p~————Ux,t .
pl= | Ly

Assume no variation at the end points ¢; and to. Evaluate the functional derivatives
ow and ow
—— and ——.
ox(t) op(t)

(20 points.) Consider the action, in terms of the Schwingerian viewpoint,
t2 dx 1,
Wx,p,v] = dt |p-|——-v]+=-mv*-U(x,t)|.
t dt 2
Assume no variation at the end points ¢; and t5. Evaluate the functional derivatives

ow ow ow

) @ M Sem

(40 points.) Consider the following construction in a field theoretical setup

WIK] = %/dw/dw’K(m)Aﬂx — K@),

(2.52)

(2.53)

(2.54)

(2.55)

(2.56)

(2.57)

(2.58)

(2.59)

(2.60)

(2.61)

(2.62)
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where W is the action written in terms of a source function K (x) and the Green’s function A(|z — 2/]).
Determine the relation between the corresponding field ¢(x) and the source, by evaluating the functional

derivative SW
) = 5 (2.6
Show that the Green’s function satisfies
52w
_ 4! - @@
Az —2'|) SRR @) (2.64)
Construct the partition function _
Z|K] = WK, (2.65)
Show that
(a) the field satisfies
10lnZ
= — 2-
o) = 505 (2.66)
(b) and the Green’s function is given by
SUVINE i A
Al =) =5 Z 5k mPRE) . (2:67)
14. (40 points.) Consider the functional
to
Wiz = / dt L(z, ) (2.68)
t1
constructed out of the function x = x(t) and its derivative & = dz/dt. In particular, let
oL
= =0 (2.69)
(a) Show that
0l [x] oL d oL oL
=== t—to) —6(t—t1)| —. 2.
52(7) {6:10 di 8:1'0] + 8 = 12) = 86 )] 5 (2:70)
(b) Further, show that
olflz]  1d .OL oL
S0 =z & ( —x%> + [é(t—tg) —6(t—t1)}%. (2.71)

This property used with the extremum principle, is the essence of the Beltrami identity. This also
gives us a glimpse of the Legendre transform,
0L

H=ime ~ L (2.72)

2.2 Fermat’s principle
1. (20 points.) The speed of light in a medium is given in terms of the refractive index
c
= - 2.73
=", (273)

of the medium, where c is the speed of light in vacuum and v is the speed of light in the medium. Fermat’s
principle in ray optics states that a ray of light takes the path of least time between two given points.
Consider a ray of light traversing a path from (z1,y1) to (22,y2) in a stratified (layered) medium, in a
plane of fixed z.
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(1,914

Figure 2.1: Problem 1.

Show that the time taken to travel an infinitesimal distance ds is given by

=38 _nds, (2.74)

v C

where ds in a plane of constant z is characterized by the infinitesimal statement
ds® = dz® + dy?. (2.75)

Fermat’s principle states that the path traversed by a ray of light from (x1,y1) to (22,y2) is the
extremal of the functional

(z2,y2) T2 2
Ty = 1/ nds = l/ dzn(z)y/1+ (%) . (2.76)
( €Z

€ J(@1,51) € Jay

Since the ray of light passes through the points (z1,y1) and (x2,y2), we do not consider variations
at these (end) points. Thus, show that

oTly] _ 14 | "@Wg , (2.77)

Using Fermat’s principle show that the differential equation for the path y(z) traversed by the ray
of light is

dy
A Mg =0. (2.78)

dx 2
dy
1 _<Z

In terms of the function §(z) defined using the relation

dy
tanf(z) = —= 2.79
an(z) = 5 (2.79)
express the differential equation in the form
d
T {n(:z:) sin 9(1:)] =0. (2.80)
Thus, derive Snell’s law for refraction,
n(x)sinf(z) =, (2.81)

where n is a constant.
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2. (20 points.) Snell’s law for refraction for stratified (layered) medium states that
n(z)sinf(z) = n, (2.82)

where 7 is a constant. Show that Snell’s law can be rewritten in the form

d
e (2.83)
dr \/n(x)? =1’
(a) Let us consider a medium with refractive index (z1 = a)
1, z<a, 584
n(:E)— E, a<zx. ( )
a
Solve the corresponding differential equation, by substituting x = nacosht, to obtain
-1 1lx
y(x) — yo = nacosh —— 1, a<z. (2.85)
na

Thus, the path in this medium satisfies the equation of a catenary. It is also useful to express the
solution in terms of the logarithm as

1 1z)”
y(x) —yo =naln 5%—1— <E§> —-1], a<uz. (2.86)
(b) For initial conditions, (z1 = a,)
dy ’
y(z1) =9 and - =y (2.87)
A P
show that integration constants are determined as
1 1 !
Yo =1y —naln [——i— — =11, and n:%, (2.88)
o Vit
Thus, write the solution as
1lx 1 22
na n? a2
y(z) —y1 =naln : - , a <. (2.89)
-t/ -1
n n

(c) For the special case y; = 0 and y] — oo show that n = 1 and

T 2
E+ E—l , a <z (2.90)

(d) Evaluate the total time taken for light to go from (x1,y1) to (x,y(z)).
Solution:

2 2 _ 242 2 1 /1
AT I D (i VAl R P Y - a <z (2.91)
c2 a++/a? — n?a? na\ n*a? n\V n?

y(x) =aln
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3. (20 points.) Snell’s law for refraction for stratified (layered) medium states that
n(z)sinf(z) = n, (2.92)

where 7 is a constant. Show that Snell’s law can be rewritten in the form

y___ 1 (2.93)
dz ~ \/n(a)?

(07 x1+ yl)

(21,91)

Figure 2.2: Problem 3.

n(z) = (2.94)

Solve the corresponding differential equation to obtain

1
y() —yo == [\/a2 —n2a2 — \/a? - nQaQ} , r <a. (2.95)
n

The path in this medium satisfies the equation of a circle. Determine the radius of the circle to be
a/n and the location of the center to be (0,yo — a+/(1/n?) — 1). For initial conditions

dy ’
y(x1) =0 and — =y (2.96)
de|,_,.
show that the integration constants are determined to be
/
L4 (2.97)

Yo = Y1 and n=-—F—=
V14,

For the special case when y; = 0 and y} — oo show that n =1 and

y(z) = Va2 — 22, z < a. (2.98)

Evaluate the total time taken for light to go from (21 = a,y1 =0) to (22 = 0,y2 = a).
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(b) To do: Check for a sign in the solution for y. Further, should y} — —c0? Refer solutions to MT-01
in Spring 2020.
Solution:
The time taken is given by

0 2 1
dy . dt 1
CT = —/a d(E n(x) 1 + (£> = agl_r)r%)A ?\/T—ﬁ (299)

The negative sign in the expression corresponds to velocity being negative. This yields
0
1+v1—02

which diverges logarithmically. Thus, the light takes infinite time to reach the point (0, a) from (a, 0).

¢ =—aln ( > ~a(ln2 —1nd), (2.100)

2.3 Geodesics on surfaces

1. (20 points.) Let us prove the intuitively obvious statement that the curve of shortest distance going
through two points (x1,y1) and (z2,y2) in a plane, the geodesics of a plane, is a straight line passing
through the two points.

a) The distance between two points in a plane is characterized by the infinitesimal statement
Y
ds* = da* + dy?. (2.101)

(b) The geodesic is the extremal of the functional

T2,Y2) d
I[y] :/ ds = 1+ y (2.102)
(

z1,Y1)

(c) Since the curve passes through the points :Cl,yl) and (22, y2), we have no variations at these (end)
points. Thus, show that

y (2.103)
(d) Using the extremum principle

Sl[y]
=0 2.104
Su(r) (2100

show that the differential equation for the geodesic is

dy
— = 2.105
dx “ ( )

where c is a contant.

(e) Solve the differential equation to identify the equation of a straight line in a plane. Find c.

2. (20 points.) Let the distance between two points in a plane be characterized by the infinitesimal statement

ds* = da* + dy*. (2.106)
The geodesic is the extremal of the functional
(z2,y2)
Iy] = / ds. (2.107)
(z1,91)

Find the geodesics. Recognize them.
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3. (20 points.) Find the geodesics on the surface of a circular cylinder. Identify these curves. Hint: To
have a visual perception of these geodesics it helps to note that a cylinder can be mapped (or cut open)
into a plane.

(a) The distance between two points on the surface of a cylinder of radius a is characterized by the

infinitesimal statement
ds® = a*d¢* + dz*>. (2.108)

(b) The geodesic is the extremal of the functional

(p2,22) 2 1d
l[z]z/ ds—/ adqﬂ/l—i— ——Z (2.109)
(¢1,21) 1 de

(c) Since the curve passes through the points (z1,¢1) and (z2,¢2) we have no variations on the end
points. Thus, show that

1dz
81[2] d add
= | V| . 2.110
0z(¢) d¢ 1dz\2 ( )
1 e
+(i%)
(d) Using the extremum principle
8l[z]
=0 2.111
52(0) R
show that the differential equation for the geodesic is
1dz
- = 2.112
5= (2112)

where c is a contant.

(e) Solve the differential equation. Identify the curve described by the solution to be a helix. Illustrate
a particular curve using a diagram.
Solution: z = ca¢ + co. Helix.

4. (20 points.) The geodesics on the surface of a circular cylinder of radius a are helices,
z = c1a¢ + co, (2.113)

where ¢; and co are arbitrary constants and the distance between two points is characterized by the
infinitesimal statement

ds* = a*d¢?* + dz*. (2.114)

The geodesic is the extremal of the functional

(¢2,22) b2 1d
l[z]:/ ds—/ adm/l—f— ——Z (2.115)
(¢1,21) ) d¢

Find the length of a geodesic passing through the points (¢1 = 0,21 = 0) and (¢2 = 7, 22 = 7a).

5. (20 points.) Show that the geodesics on a spherical surface are great circles, that is, circles whose centers
lie at the center of the sphere.

(a) The distance between two points on the surface of a sphere of radius a is characterized by the
infinitesimal statement
ds® = a*df* + a*sin” 0d¢?. (2.116)
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(b) The geodesic is the extremal of the functional

(927¢2) 02 dQZS 2
1[¢]:/ ds:/ adf 1+sin29<—> : (2.117)
(61.61) 0 do

(c) Since the curve passes through the points (61,¢1) and (62, ¢2) we have no variations on the end
points. Thus, show that

S R do . (2.118)
a do(0) de Ao\ ?
1+sin?6 ( ==
de
(d) Using the extremum principle
3l[¢]
—— =0 2.119
50(6) (2419
show that the differential equation for the geodesic is
do c
2= , (2.120)
df  sinh+/sin®6 — 2

where c¢ is an arbitrary constant.
(e) Solve the differential equation in Eq. (2.120) to obtain the equation of the geodesic as

sin(¢ + ¢o) + ccot 6 = 0, (2.121)
where ¢ = ¢/v1 — 2, and ¢y is a constant of integration.
Hint: Integrate the equation in Eq. (2.120) to write

cdf
b+ ¢ = / , (2.122)
sin 0+/sin? 0 — ¢2

where ¢g is a constant of integration. Then, substitute

t= — cot (2.123)
and complete the resulting integral to obtain
¢+ o = —sin" 't (2.124)
(f) Expand the sine function in Eq. (2.121) and express it in the form
sin ¢ sin 6 cos ¢ + cos ¢g sin @ sin ¢ + ccosf = 0. (2.125)
Interpret this to be an equation of a plane passing through the origin by recognizing the form
(r—rg)-n=0, (2.126)
where
r = asinfcospx + asinfsingy + acosl z, (2.127a)
ro =0x+0y+02z, (2.127Db)

L O 5 . c

n=+v1-c?singgx++1—c?cosppgy + mz. (2.127¢)
This plane passes through the origin because rp = 0. The vector n is a constant unit vector de-
termined by the integration constants ¢ and ¢, which are determined by the two original points
(01,¢1) and (02, ¢2). The vector r is an arbitrary point on the sphere of radius a. The condition in
Eq. (2.126) selects those points on the sphere that are on the plane that is perpendicular to i and
that passes through the origin (center of sphere.) Thus, these points lie on a great circle.
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6. (20 points.) Find the geodesics on the surface of a cone with opening angle 6.
Hint: To have a visual perception of these geodesics it helps to note that a cone can be mapped (or cut
open) into a plane.

Solution: ro
= . 2.128
") = e 006 — o)) (2.128)
7. (20 points.) Find the geodesics on the surface of a circular cylinder.
Solution: Helix.
2(¢) = 19+ co. (2.129)

2.4 Brachistochrone on surfaces

8. (60 points.) Consider a rope of uniform mass density A = dm/ds hanging from two points, (z1,y1) and
(z2,y2), as shown in Figure2.3. The gravitational potential energy of an infinitely tiny element of this

(ilfz,yz)

(21,91)

Figure 2.3: Problem 8.

rope at point (z,y) is given by
dU = dm gy = Agds y, (2.130)

where

ds* = da? + dy?. (2.131)
A catenary is the curve that the rope assumes, that minimizes the total potential energy of the rope.

(a) Show that the total potential energy U of the rope hanging between points 1 and x5 is given by

(121742) Y2 de' 2
Ulz] = /\g/ yds = /\g/ dyy\[1+ (—) : (2.132)
(z1,91) Y1 dy

(b) Since the curve passes through the points (x1,y1) and (z2,y2), we have no variations at these (end)
points. Thus, show that

dx
oU d dy
U] _ gt |y dy (2.133)
ox(y) dy dr\ 2
1 il
i ( dy >
(¢) Using the extremum principle show that the differential equation for the catenary is

d

e — (2.134)

dy y2 — a2

where ¢ is an integration contant.
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(d) Show that integration of the differential equation yields the equation of the catenary

Tr — X9

y = acosh , (2.135)
a
where x( is another integration constant.
(e) For the case y1 = y2 we have
N cosn xO, (2.136a)
a
92 _ cosn 20 (2.136b)
a
which leads to, assuming z; # x2,
wo = 2 ;m. (2.137)
Identify z¢ in Figure2.3. Next, derive
Yi _ Y2 T2 — 21
2L — 72 _ osh 2.138
- — = cos 5 ( )

which, in principle, determines a. However, this is a transcendental equation in a and does not allow
exact evaluation of a in closed form and one depends on numerical solutions. Observe that, if x = xg
in Eq. (2.135), then y = a. Identify a in Figure2.3.

9. (20 points.) A catenary is the curve that an idealized hanging chain assumes under its own weight when
supported only at its ends in a uniform gravitational field. It is the curve y(z) that minimizes the potential

energy U of the hanging chain
M
U:/dU: /dmgy: ?g/yds, (2.139)

where M is the mass of the uniform chain, P is the length of the chain, g is the acceleration due to gravity.
Let us assume the two end points of the chain are at the same height. A catenary is given by

y = acosh f, (2.140)
a

where the parameter a, an integration constant, characterizes the catenary. Find the relation between the
parameter a, the perimeter length P of the chain, and the height yq.

(a) Determine the perimeter length P of the hanging chain using

P:/ ds. (2.141)

—x9

(b) Show that the relation between the parameter a, the perimeter length P of the chain, and the height

yo in Figure 2.4 is given by
P\ 2
a= |y — <5) (2.142)

(¢) Show that the distance zg is given by

P
2o = acosh™’ %’ =aln <%° + %) . (2.143)

Show that in the limit a — 0 xg — 0. This corresponds to the case yo — P/2.
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10.

11.

12.
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Figure 2.4: Problem 9.

(20 points.) A catenary is described by

y = acosh (w—:m) , (2.144)

a

where constants a and z( are determined by the position of the end points (x1,y1) and (z2,y2). Let us
choose zg = 0 and a = 1 such that
y = coshx, (2.145)

where z and y are dimensionless variables.

(a) Using series expansion show that
2

coshle—i—%—i—.... (2.146)

(b) The parabola y = 1+ x2/2 hugs the catenary at 2 = 0, but it does not pass through the end points.
Consider the parabola

y=1+ %xQ (2.147)
that also hugs the parabola at x = 0. Determine « such that this parabola passes through x = +1.
Choose this parabola to be an approximation for the catenary. Plot this parabola and the catenary in
the same plot for —1 < # < 1 and estimate the maximum deviation (with sign) in this approximation.
Does the parabola sag below the catenary, or is it the other way around.

Solution: « = (cosh(1)—1) ~ 1.08616. Maximum deviation is -0.010 (about 1%). Thus, the parabola
sags below the catenary.

(20 points.) (Based on Problem 7 in Chapter 2 of Goldstein, 2nd edition.) Catenoid: A rope of uniform
linear mass density and indefinite length passes freely over pulleys at equal heights y; = y2, above the
surface of Earth, with horizontal distance zo — x1 between them. (Assume uniform gravitational field.)
Determine the curve followed by the rope hanging between the pulleys. Compare (using plots) the catenoid
and a parabola.

(20 points.) Write a brief summary on the Isoperimetric problem, and problem of minimum surface of
revolution. For example, refer Goldstein, Chapter 2.

A related note: A gyroid is an infinitely connected triply periodic minimal surface discovered by Alan
Schoen, who is a retired faculty of the Math department in STUC and currently a resident of Carbondale.



Chapter 3

Stationary action principle (with no
variations at boundary)

3.1 Euler-Lagrange equations

1. (30 points.) The motion of a particle of mass m near the Earth’s surface is described by

d
pn (mv) = —myg, (3.1)

where v = dz/dt is the velocity in the upward z direction.

(a) Find the Lagrangian for this system that implies the equation of motion of Eq. (3.1) using the
principle of stationary action.

(b) Determine the canonical momentum for this system
(c) Determine the Hamilton H(p, z) for this system.

(d) Determine the Hamilton equations of motion.

2. (30 points.) The motion of a particle of mass m undergoing simple harmonic motion is described by

d
p (mv) = —kz, (3.2)

where v = dx/dt is the velocity in the = direction.

(a) Find the Lagrangian for this system that implies the equation of motion of Eq. (3.2) using the
principle of stationary action.

(b) Determine the canonical momentum for this system
(¢) Determine the Hamiltonian H (p,x) for this system.

(d) Determine the Hamilton equations of motion.

3. (30 points.) Given the Lagrangian
Li(z,v) = %va —mgz, (3.3)
find the equation of motion. Next, given another Lagrangian
Lao(z,v) = %va —mgz + buz, (3.4)

find the equation of motion. Analyze and justify.

27
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4. (30 points.) A non-relativistic charged particle of charge ¢ and mass m in the presence of a known
electric and magnetic field is described by

% (mv) = gE + qv x B. (3.5)

(a) Using
B =V xA, (3.6a)
B=-vo- 22 (3.6b)

find the Lagrangian for this system, that implies the equation of motion of Eq. (3.5), to be

1
L(x,v,t) = §mv2 —qp+qv- A, (3.7)

using the principle of stationary action.
(b) Determine the canonical momentum for this system

(¢) Determine the Hamiltonian H (x, p, ) for this system to be

H(x,p,t) = ﬁ (p — qA)* + g0 (3.8)

5. (30 points.) A relativistic charged particle of charge ¢ and mass m in the presence of a known electric
and magnetic field is described by

i mv
dt /1 w2
C2

(a) Find the Lagrangian for this system, that implies the equation of motion of Eq. (3.9), to be

2
L(x,v,t) = —mc* /1 — 2—2 —qp+qv-A, (3.10)

using the principle of stationary action.

=¢E + gqv x B. (3.9)

(b) Determine the canonical momentum for this system

(¢) Determine the Hamilton H(r,p) for this system to be

H(x,p,t) = \/m2c* + (p— qA)* & + g0 (3.11)

6. (20 points.) Verify, by substitution in Egs. (3.6), that a plausible scalar and vector potential for constant
(uniform in space and time) electric field E and magnetic field B are

¢ =-r-E, (3.12a)
A= %B xr. (3.12b)

Thus, show that
qp—qv-A=—-d-E—pu-B, (3.13)

where d = gr is the electric dipole moment and g = Zr x v = 5L, with L = r x myv, is the magnetic
dipole moment.
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7. (20 points.) The Hamiltonian

1 2
H(x,p,t) = 5— (P~ qA)" +¢¢ (3.14)
describes a non-relativistic particle of charge ¢ and mass m in the presence of a known electric and

magnetic field. Find the Hamiltonian equations of motion to be

CCZZ—D: = % (p—qA), (3.15a)
P vorava) B
= -V [qqﬁ —qv- A} (3.15b)
Further, show that the above equations, in conjunction, imples the Lorentz force equation
% (mv) =¢E + qv x B. (3.16)

8. (20 points.) Consider the action,

(a) in terms of the Lagrangian viewpoint,

t2 1 dx\?
Wix| = dt | = — | =U(x,t)]. 3.17
- [2m(dt> (.1 (3.17)
Assume no variation at the end points ¢; and t5. Evaluate the functional derivative
ow
—_— 3.18
0x(t) (3.18)
(b) in terms of the Hamiltonian viewpoint,
b2 dx  p?
W = dt | p-— ——-U(x,t)]|. 3.19
eopl = [ a5 - - v (3.19)
Assume no variation at the end points ¢; and t5. Evaluate the functional derivatives
144 oW
— d ——. 3.20
o " e (320)
(¢c) in terms of the Schwingerian viewpoint,
t2 d 1
Wix,p,v] = / dt [p- (—X - V) +—mv? —U(x,t)] . (3.21)
t dt 2
Assume no variation at the end points ¢; and ¢5. Evaluate the functional derivatives
ow ow ow
—_— — d ———. 3.22
ox(t)’ ovt) Y 3p(e) (8:22)
9. (20 points.) Consider a (time independent) Hamiltonian
which satisfies the Hamilton equations of motion
dx oOH
— = — 3.24
dt op’ (3.242)
d OH
D . (3.24b)

at — ox
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(a) Recollect that the Lagrangian, which will temporarily be called the z-Lagrangian here, is defined by
the construction

Ly(z, &) = pi — H(z,p). (3.25)
Starting from Eq. (3.25) derive
0L, 0H
0L,
o D, (3.26b)
OL, . OH
—-— = - . 3.26
op v op (8.26¢)

Using the Hamilton equations of motion, Eqs. (3.24), in Egs. (3.26) we have the equations governing
the z-Lagrangian to be

0L,
p— .2
5 0, (3.27a)
0L,
p— .2 b
0 =P (3.27b)
ddL, 0L,
T = A (3.27¢)

(b) Now, define the p-Lagrangian using the construction

Ly(p,p) = —zp — H(z,p). (3.28)

The opposite sign in the construction of the p-Lagrangian is motivated by the action principle, which
does not care for a total derivative, refer Schwinger. Starting from Eq. (3.28) derive

oL,  OH
oL,

oL, . OH

o - P (3:29¢)

Using the Hamilton equations of motion, Eqs. (3.24), in Egs. (3.29) we have the equations governing
the p-Lagrangian to be

oL
oL
doL, oL,
@ o (3.30c)

1 1
Ly(x,3) = 5mg’c2 - 51«1:2, (3.31a)
2
1
H(z,p) = 2p—m + ke, (3.31b)
PP
Ly(p,p) = o7+ 5 (3.31c)
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10. (20 points.) Counsider the Lagrangian for the unbounded quartic potential
. L.y 4
L(s,$) = 38 tgs (3.32)

Using the transformation on the complex plane

s =—2iv1+ix (3.33)
obtain the Lagrangian
1 32
L(z,&) == 16g(1 + iz)? 3.34
(:8) = 57 gy 16001+ i) (3:3)
and show that
oL, i
S - (3.35)

P= 0 T Utia)

Construct the Hamiltonian
H(x,p) = pi — Ly(v, %) (3.36)

and show that
1
H(z,p) = 5p2(1 +iz) — 16g(1 + iz)?. (3.37)

Derive the Hamilton equations of motion

& = p(l +ix), (3.38)
: 2
. % — 329(1 + ix). (3.39)
i
Further, derive
. 1
p= —§p3. (3.40)
Construct the p-Lagrangian
and show that
) 1 p2 p4
L =—|=—-= 3.42
o) = - | 5 - 5 (3.42)

upto a total derivative.
11. (20 points.) Construct the Hamiltonian from the Lagrangian

1 42
L(z, &) == 16g(1 + ix)? A4
(@,8) = 5 {7y + 10901 + i2) (3.43)

and show that the equation of motion can be expressed in the form

p=—ap’. (3.44)
Find «. Here
oL
== 3.45
p= o (3.45)

is the canonical momentum.
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14.

15.

16.
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(20 points.) Consider the Hamiltonian

H = H(r,p,t), (3.46)
which satisfies the Hamilton equations of motion
dr OH
- = — 3.47
dt op’ (3472)
dp OH
- = ——. 3.47b
dt Or ( )
The p-Lagrangian is constructed usng the definition
d
L,=-r- d—I; — H(r,p,t). (3.48)

Investigate the dependence of the p-Lagrangian on the variable r by evaluating the partial derivative with
respect to it. That is, evaluate

oL,
—r 3.49
B (3.49)
(20 points.) Given a Lagrangian L, the Hamiltonian H is given by
dr
H=p-——-1L 3.50
p-——L (3.50)
where p is the canonical momentum. Evaluate
oH
— 3.51
. (351)
where v stands for dr/dt.
(20 points.) Given a time-independent Hamiltonian
H = H(x,p) (3.52)
and the corresponding Hamilton equations of motion, show that
dH
B 3.53
= (3.53)
where « is a number. Evaluate a. What is the physical interpretation?
(20 points.) Given
U=U(SV) (3.54)
and
dU =TdS — PdV (3.55)
and
F=U-TS§, (3.56)
evaluate oF
- 3.57
55 (3.57)

(20 points.) (Refer Goldstein, 2nd edition, Chapter 1 Problem 8.) As a consequence of the Hamilton’s
stationary action principle, the equations of motion for a system can be expressed as Fuler-Lagrange
equations,

d oL 0L

795 920 (3.58)
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in terms of a Lagrangian L(z,&,t). Show that the Lagrangian for a system is not unique. In particular,
show that if L(z,x,t) satisfies the Euler-Lagrange equation then

L'(x,#,t) = Lz, &,t) + %, (3.59)

where F'(z,t) is any arbitrary differentiable function, also satisfies the Euler-Lagrange equation.

(20 points.) Consider the four-vector z® = (ct,x). Here a = 0, 1,2,3, such that 2 = ¢t and z* are the
three components of vector x. The proper time s, that remains invariant under a Lorentz transformation,
satisfies

—ds? = —c*dt? + dx - dx. (3.60)

1ds [ v?

where v = dx/dt. The energy E and momentum p of a particle of mass m is defined as

Thus, derive the relation

me’— = (E, pc). (3.62)

Find the explicit expressions for E and p in terms of v, ¢, and m. Show that

dz® dz,,
— = =1 3.63
ds ds ’ ( )

and use this to derive E? = p2c? + m2ct.

(20 points.) The motion of an electric charge of mass m in a time-independent magnetic field, (in the
absence of an electric field,) is described by the equation of motion

d
a(mv) =gqv x B. (3.64)

Recall, the electric ad magnetic field is given in terms of (gauge dependent) electric and magnetic potentials
as

0A

E=-Vo¢- EE (3.65)

B=VxA. (3.66)

The electric potential and magnetic vector potentials are by construction independent of velocity. For
time-independent magnetic field, (in the absence of an electric field,) we have

oA

and
B=V xA. (3.68)

(a) Starting from the equation of motion derive

d (1

Thus, kinetic energy is conserved. We shall see that the Hamiltonian for this configuration is numer-
ically equal to the kinetic energy. We emphasize that to satisfy the Hamilton equations of motion
the Hamiltonian has to be written in terms of position of momentum, not velocity.
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(b) Starting from the equation of motion derive

d
E(mv +qA)=V(qv-A). (3.70)
Compare with the Euler-Lagrange equation
d oL 0L
= _ == 71
dtdv  Or (3.71)
and identify
0L
v = MV +qA, (3.72a)
0L
— = V(gv-A). 3.72b
= V(v A) (3.720)
Thus, find a Lagrangian
1
L(r,v) = §mv2 +qv-A. (3.73)
(¢) Show that the canonical momentum is given by
oL
p=- =mv + gA. (3.74)
(d) Construct the Hamiltonian using
H(r,p)=p-v—1L (3.75)
and show that ( A)?
P—q
H = 3.76
(r,p) 5 (3.76)
Show that the Hamiltonian is equal to kinetic energy, that is,
1
H= §mv2. (3.77)
(e) Derive the Hamilton equations of motion,
de 0H (p—qA)
dt  op m (378)
dp OH
- = ——= -A). .
i 5y = Vv A) (3.79)
(f) For a constant magnetic field show that
1
A= §B X r (3.80)
is a magnetic vector potential upto a gauge. That is, evaluate the curl of A. Show that
—qv-A = _1B. L, (3.81)

2m

where L = r x (mv) is an angular momentum.

19. (20 points.) A two-body system constituting of two masses m; and mg, described by an interaction
energy that depends only on the difference in the position of the two bodies

r=r; —ry, (3.82)

is described by the Lagrangian

1 1
L(I‘l, Vi,ro, VQ) = §mlvf + §m2vg - U(I‘l - 1'2). (383)
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(a) Derive the canonical momentums,
P1 = m1Vvy and P2 = MaVa. (384)

Find the Euler-Lagrange equations,

d
E(mlvl) = —VlU(I‘l - 1‘2), (385&)
d
E(mQVQ) = VgU(I‘l - 1‘2). (385b)
Construct the Hamiltonian
pi | P
H(ry,p1,12,p2) = =— + == + U(ry — 12) (3.86)

2m1 2m2
and derive the Hamilton equations of motion.

(b) In terms of coordinates representing the position of center of mass

miry + mors

R= (3.87)
mi1 + mo
and the relative position of the masses
r=r; —ro (3.88)
show that
rn=R+—2 (3.89a)
mi1 + mo
rp=R-—"1 (3.89b)
mi + meo
In terms of the respective velocities
dR dr
V = E and v = E (390)
derive
vi =V+ i v, (3.91a)
mi + mo
mi
=V - 3.91b
vz mi1 + mo ( )
(¢) In terms of these coordinates show that
1 1
L(r,v,R,V) = 5MV2 + 5“”2 —U(r), (3.92)
where M is the total mass and p is the reduced mass,
1 1 1
M=m;+my and —=—+—. (3.93)

12 mq mao

Observe that the reduced mass is always smaller than the smaller of the two masses. Observe that
the Lagrangian is independent of R even though it depends on the associated velocity V. Such a
coordinate is called a cyclic coordinate. Determine the canonical momentums,

oL

oL

— = uv. .94b
5y = MY (3.94Db)

p:
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Find the Euler-Lagrange equations of motion,

%(MV) =0, (3.95a)
%(uv) = -VU. (3.95Db)

Here the momentum associated with the cyclic coordinate R is conserved. The canonical momentum
associated to a cyclic coordinate is always conserved.

(d) Show that
P =pi+p2 (3.96)

is the toal momentum of the system and

p= map1 — Mi1Pp2 (3'97)

mq —|—m2

can be defined as the relative momentum. Construct the Hamiltonian using the Legendre transform,

p p
H P =—+— . .
(r.p,R,P) 2M+2M+U(r) (3.98)
Derive the Hamilton equations of motion
dR P
— = — 3.99
it~ M’ (8.99a)
dp
— =0 3.99b
o (3.99b)
and
d
a_P (3.100a)
dt I
dp
— = —-VU. 3.100b
dt v ( )
20. (20 points.) The Kepler problem is described by the Lagrangian
. 1 1 .
L(Ta ¢a 7.,7 (b) = 5[[”"2 + 5#T2¢2 + %7 (3101)

where the first term is the contribution to the kinetic energy of the particle with reduced mass p due to
radial velocity 7, the second term is the contribution to the kinetic energy due to it’s tangential velocity
q'S, and the third term is the negative of the gravitational potential energy between masses m, and mo.
Here a = GuM. (Show that uM = mims.) Show that the canonical momentum in the radial direction
and the associated force are

_oL _

pr=pe ur, (3.102a)
oL g

respectively. Thus, derive the equation for the radial motion to be

d . . o
= purd? — ot (3.103)

where the second term on the right is the gravitational force of attraction and the first term on the right
is the centrifugal force due to the continuous change in the direction of tangential velocity. Show that the
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canonical momentum in the tangential direction, the angular momentum, and the associated canonical
force, the torque, are

oL 9
2= —— = ur<o, 3.104a
95 " ) ( )
oL
Fpo=—=0 3.104b
so that the angular momentum is a constant of motion,
d
—L,=0. 3.105
p (3.105)

(a)

Using the conservation of angular momentum in Eq. (3.104a) to replace gb in the equation of motion
in Eq. (3.103) derive

d L? «
—ur == — = 3.106
at” urs 2’ ( )
such that we can write )
d 0 L «
—ur = — | ——2 — 1. 3.107
a"" " or ( 2ur? + T) ( )
Multiplying by 7 on both sides gives
d dr O L? «
= — — [ = — 3.108
"t T ator ( 2ur? + T) ( )
which can be written in the form
d (1 , L? o
Z |z z _ ) = 1
p <2,ur + 57 7“) 0 (3.109)

and is interpreted as the statement of conservation of energy.

Find the error in the following steps. Using the conservation of angular momentum in Eq. (3.104a)
to replace ¢ in the Lagrangian in Eq. (3.101) derive

2 o

L(r,7) = %mﬂ Tty (3.110)
and derive the equation of motion
2
%w‘ - % (22’;2 + %) . (3.111)
Thus, derive the statement of conservation of energy as
d (1 . Lg o
7 <§,ur ey ;) =0 (3.112)

with a wrong sign. The lesson learnt is that substituting an equation of motion to replace a variable
inside the Lagrangian demotes it from the status of the Lagrangian.

21. (20 points.) Describe the motion corresponding to the Hamiltonian

p2

1
Ly Sk =),

H(r,p) =~ + 3 (3.113)
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where r = iz + jy + k2 is position p is the associated momentum, and m and k are constants. In
particular, plot the trajectory of motion for the the initial conditions

r(0) = i0+j R + kO, (3.114a)
v(0) = iwR +j0 + k0, (3.114D)
where w = y/k/m and R is a non-zero length.

(20 points.) [Based on Landau and Lifshitz. Section 7.] A particle of mass m moving with velocity v;
leaves a half-space in which the potential energy is a constant U; and enters another in which the potential
energy is a different constant Us > Uj.

(a) Force is the manifestation of the system trying to attain minimum energy. Draw the velocity vector
vo in Fig. 3.1 that satisfies these conditions. Does it deflect away from normal or towards the normal?

U, Us > Uy

xT

L.

01

Vi

Figure 3.1: Problem 22.

(b) The potential energy can be described by

U
Ulr) = { L <6 (3.115)
Uz, a<z.
In terms of the Heavyside step function
0, z2<0
0(z)=<" ’ 3.116
(2) {1, 0 <z, ( )
show that the potential energy can be expressed in the form
Ur) =U1+ (U — U1)0(z — a). (3.117)
(¢) Show that a suitable Lagrangian for the motion is
1
L(r,v) = §mv2 — Uy — (Usy = Up)0(z — a). (3.118)
Derive the relations
oL
v =M (3.119a)
oL
E = -z (Ug —Ul)é(z—a). (3119b)
Recall that the derivative of Heaviside step function is a é-function. Thus, derive the equation of
motion p

—mv =—2%(Uy —Up)d(z — a). (3.120)
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(d) Show that the momentum in the plane perpendicular to z is conserved. Refer Fig. 3.1. That is,
v1 sin 07 = vg sin Os. (3.121)

Show that the energy is conserved. That is,
L 9 L o
5mi +U; = 51 + Us. (3.122)

Thus, derive the measure of deflection at the interface to be given by

sin6‘1 o 1— 2(U2—U1)

= . 3.123
sin 6, mo? ( )
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Chapter 4

Lagrangian mechanics

4.1 Constraint equations and Lagrangian

1. (20 points.) A mass m; is forced to move on a vertical circle of radius R with uniform angular speed
w. Another mass ms is connected to mass m; using a massless rod of length a, such that it is a simple
pendulum with respect to mass my. Motion of both the masses is constrained to be in a vertical plane in
a uniform gravitational field.

(a) Write the Lagrangian for the system.
(b) Determine the equation of motion for the system.
(¢) Give physical interpretation of each term in the equation of motion.

2. (20 points.) A system, characterized by the parameters w, «, and 3, and the dynamical parameter 0, is
described by the equation of motion

0 + w?sinf + af cos + 36 sin § = 0. (4.1)
Write the above equation of motion in the small angle approximation, to the leading order in 6.

3. (20 points.) A mass m slides down a frictionless ramp that is inclined at an angle 8 with respect to the
horizontal. See Fig. 4.1. Assume uniform gravity g in the vertical downward direction.
(a) What is the constraint in the variables.
(b) In terms of a suitable dynamical variable write a Lagrangian that describes the motion of the mass.

(¢) Find the equations of motion from the Lagrangian.

Figure 4.1: Problem 3.

41
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4. (20 points.) The Atwood machine consists of two masses m and mg connected by a massless (inexten-
sible) string passing over a massless pulley. See Figure4.2. Massless pulley implies that tension in the
string on both sides of the pulley is the same, say T'. Further, the string being inextensible implies that

the magnitude of the accelerations of both the masses are the same. Let mo > m;.

(a) What is the constraint in the variables.

(b) In terms of a suitable dynamical variable write a Lagrangian that describes the motion of the mass.

(c¢) Find the equations of motion from the Lagrangian.

Y1

]

Figure 4.2: Problem 4.

5. (20 points.) A pendulum consists of a mass mo hanging from a pivot by a massless string of length
a. The pivot, in general, has mass my, but, for simplification let m; = 0. Let the pivot be constrained
to move on a horizontal rod. See Figure 5. For simplification, and at loss of generality, let us chose the

motion of the pendulum in a vertical plane containing the rod.

Figure 4.3: Problem 5.

(a) Determine the Lagrangian for the system to be

. 1 1 . .
L(z,%,60,0) = §m2j:2 + §m2a292 + moaif cos 8 + maga cosb.

(b) Evaluate the following derivatives and give physical interpretations of each of these.

8_L
0%
8_L
ox
8_L
a0
6_L
00

moZ + moab cos 6,

= O,
= m9a?0 + maai cos 0,

= —mgazfsinf — mogasinf.

(4.3a)
(4.3b)
(4.3c)

(4.3d)
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(©)

Determine the equations of motion for the system. Express them in the form

i+ af cos§ — af?sinf = 0, (4.4a)
a4 #cosf + gsinf = 0. (4.4b)

Observe that, like in the case of simple pendulum, the motion is independent of the mass mo when
myp = 0.

In the small angle approximation show that the equations of motion reduce to

i+af =0, (4.5a)
ab + &+ gf = 0. (4.5Db)

Determine the solution to be given by
=0 and Z=0. (4.6)

Interpret this solution.

The solution 6 = 0 seems to be too restrictive. Will this system not allow 6 = 07 To investigate this,
let us not restrict to the small angle approximation. Rewrite Egs. (4.4), using Eq. (4.4a) in Eq. (4.4b),
as

i+ af cos§ — af?sinf = 0, (4.7a)
sin 6 |afl sin 6 + af? cos 0 + g} = 0. (4.7b)

In this form we immediately observe that 8 = 0 is a solution. However, it is not the only solution.
Towards interpretting Eqs. (4.7) let us identify the coordinates of the center of mass of the mq-mq
systemm,

(m1 + ma)Tem = mix + ma(x + asinb), (4.8a)

(m1 4+ ma)Yem = —Mmaacosb, (4.8b)

which for m; = 0 are the coordinates of the mass mso,

Zem = X + asinb, (4.9a)
Yem = —aCOS 0. (4.9b)
Show that
Fem = &+ af cosb, (4.10a)
Jem = absin, (4.10b)
and
Fem = @ + ablcosf — ab? sin 6, (4.11a)
Yem = afsin 0 + ab? cosf. (4.11b)

Comparing Eqgs. (4.7) and Egs. (4.11) we learn that

Fom = 0, (4.12a)
sin 0 [fiem + | = 0. (4.12b)

Thus, §cm = —g is the more general solution, and # = 0 is a trivial solution.
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(f) Let us analyse the system for initial conditions: 8(0) = 6y, 6(0) = 0, £(0) = 0. Show that for this
case Tem(0) = 0 and

1
a(cos@ — cosby) = ggtz. (4.13)

Plot 6 as a function of time ¢. Interpret this solution.

(g) To do: The interpretation does not seem satisfactory. Is m; = 0 physical here?

6. (20 points.) A pendulum consists of a mass mo hanging from a pivot by a massless string of length as.
The pivot, in general, has mass m1, but, for simplification let m; = 0. Let the pivot be constrained to
move on a frictionless hoop of radius a;. See Figure 6. For simplification, and at loss of generality, let us
chose the motion of the pendulum in the plane containing the hoop.

Figure 4.4: Problem 6.

(a) Determine the Lagrangian for the system to be

) ) 1 L1 ) ..
L(61,01,02,05) = imgafﬁf—i—§m2a§6‘§+m2a1a2916‘2 cos(f1 —b03)+magay cos @1+magas cos By, (4.14)

(b) Evaluate the following derivatives and give physical interpretations of each of these.

oL

87 = mga%H.l + m2a1a29.2 COS(91 - 92), (415&)

1

oL co .

%0 = —maayagfi02 sin(f; — O2) — magay sin by, (4.15b)
1

oL Y .

—_— = m2a292 + m2a1a291 COS(91 - 92), (415C)

00,

oL co .

0, = maaiagbibs sin(f; — O2) — magas sin Hs. (4.15d)
2

(c) Determine the equations of motion for the system. Express them in the form

61 + w?sin b + %ég cos(fy — 62) + %03 sin(f; — 62) = 0, (4.16a)
0y + w3 sin By + B0; cos(0; — By) — B2 sin(f; — 63) = 0, (4.16b)

where )
wfza%, wgza%, ﬁzz—;zi—? (4.17)

Note that S is not an independent parameter. Also, observe that, like in the case of simple pendulum,
the motion is independent of the mass ms when m; = 0.
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(d) In the small angle approximation show that the equations of motion reduce to

.. 1.
0 +wif; + Eoz =0, (4.18a)
éz + w§92 + ﬁ@l = 0. (4.18b)

(e) Determine the solution for the initial conditions
01(0) = 02(0) = B9, 01(0) = 65(0) = 0. (4.19)
Interpret and expound your solution.

7. (20 points.) Consider the coplanar double pendulum in Figure 7.

o me

Figure 4.5: Problem 7.

(a) Write the Lagrangian for the system. In particular, show that the Lagrangian can be expressed in

the form
L=1Li+ Lo+ Lins, (4.20)
where
1 )
Ll = §(m1 + mg)afﬁf + (m1 + mg)gal [0} 91, (421&)
1 .
L2 = 577’1,20,%9% + magas COS 92, (421b)
Lint = mgalagélég COS(91 — 92) (421C)
(b) Determine the equations of motion for the system. Express them in the form
(m1 + mg)ﬁlél + (m1 + mz)g sin 91 + m2a2é2 COS(91 - 92) + mQGQég sin(01 - 92) = O, (422&)
agég + gSiIl 92 + alél COS(91 — 92) — aléf sin(01 - 92) = 0. (422b)
(¢) In the small angle approximation show that the equations of motion reduce to
él + wfel + %92 =0, (4.23&)
0y + w20y + 86, = 0, (4.23b)
where )
2_ 9 2_ 9 ma ar W
-9 - = == =22 4.24
“ ar’ 2 a’ “ my 4 mg’ y az  wi ( )
Note that 0 < o < 1.
(d) Determine the solution for the initial conditions
01(0) =0, 62(0)=0, 6:;(0)=0, 62(0)=wo, (4.25)

fora =1/2 and g = 1.
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4.2 Small angle approximation and normal modes
1. (20 points.) Consider the differential equation
B(t) = —wiz(t), (4.26)
where dot denotes differentiation with respect to time, in conjunction with a suitable initial condition.

(a) Using Fourier transform

x(t) = /OO d—we_iwt:i(w), (4.27a)

oo 2T
oo

F(w) = / dt ™' (t), (4.27b)

— 00

—w?i(w) = —wit(w). (4.28)

Observe that we can arrive at this equation using the transcription,

% — —iw, (4.292)
2(t) = F(w), (4.29b)

in the original differential equation. Thus, the algebraic equation for Z(w) is
(w? —wHz(w) = 0. (4.30)
(b) The solution to the above algebraic equation can be expressed in the form
#(w) = a(w)d(w? — wd), (4.31)

where G(w) is to be determined. Using the property of d-functions show that

260) = L0 )+ 500 4 ), (432)
(c) Using Fourier transform evaluate
Lawi) e, 1 a(=w1) o
t) = — Wity — ettt 4.33
x(t) 21 2w ¢ +27‘r 2w1 ¢ ( )
In terms of numbers
1 d(wl)
A = — 4.34
! 21 2wy ( 2)
1 d(—wl)
By = — 4.34b
1 o0 2&)1 ’ ( )
express the solution in the form _ _
x(t) = Aje ™" + Bt (4.35)

The numbers A; and B; are determined from initial conditions. For example, show that for initial
conditions z(0) = A and ©(0) = 0 the solution is

x(t) = Acoswit. (4.36)
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2. (20 points.) Two masses m; and mgy are constrained to be on the = axis, but are free to move on the
axis. They are connected by a spring of spring constant k. Negelect the gravitational force between them.
Determine the normal modes of vibration for this system.

(a)

Let x1 and z2 > x1 be the positions of the masses and a be the equilibrium length of the spring.
Show that the equations of motion for the two masses are

i = +wi(zy — 21 —a), (4.37a)
iy = —w3(zy — 11 — a), (4.37b)

where w? = k/m; and w3 = k/ms. The change in length of the spring from equilibrium length a is

T =29 — T —a. (4.38)
Thus, show that
& =&y — 1. (4.39)
Thus, derive
= —(w? 4wz (4.40)

and conclude that the normal modes are

w? = w? + Wi (4.41)

Show that the Lagrangian for the system is

. 1 . 1 . 1
L(x1, @, &1, 02) = gmle + §m2:17§ - 5]{3(172 — 1 —a)? (4.42)

Derive the Euler-Lagrange equations of motion for x7 and x5. Then, introduce the transformations

(m1 + ma)Tem = Mixy + Maka, (4.43a)
x =129 — 21— a (4.43b)
and obtain the Lagrangian
. . 1. .5 1 5, 1 5
L(zem, T, Tem, &) = §M:vcm + SHE" = §kx ) (4.44)
where M = mq + ms and ) . )
oL, (4.45)

2 my mo
Derive the Euler-Lagrange equations for x., and x. Describe the motion. Determine the normal
modes.

3. (20 points.) Find the normal modes for the system described by the Lagrangian

1 1
L(r,v) = 5vT M-V — ng ‘K-, (4.46)

where r = (21, x2) is a position vector on a plane, v = r is velocity, and T in superscript denotes transpose.
Matrices M and K are

o m 0 o kl kg
Mo (0] e (B). e
4. (20 points.) Consider the set of differential equations
i1 () +wizy(t) = wizs(t), (4.48a)
Bo(t) + wize(t) = wizy(t), (4.48Db)

where dot denotes differentiation with respect to time, in conjunction with suitable initial conditions.
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(a) Using Fourier transform show that Z;(w) and Z3(w) satisfy the algebraic equations
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(Wi — w?)i1 (W) — wiZa(w) = 0,
= 0.

—wi1 (W) + (W3 — w?)T2(w)

(4.49a)
(4.49D)

Observe that they decouple for ws = 0. The explicit nature of the coupling is brought out by writing

the solutions, #; (w) and Z2(w), in the form

2

T(w) = ﬁfz(u)),

Using the two solutions in conjunction show that the solutions satisfy

(w - )\1)(&) + /\1)(w - AQ)((U + Ag)fl(w)
(w - )\1)(&) + /\1)(w - AQ)((U + AQ):%Q(CU)

3

0
0

3

where +£\; and +\s are roots of the quartic equation

2

(@2 — ) (&? — ) —wh = 0.

Evaluate the roots for w3 > w? to be

2 2
1
A= L) L~ e

2 2
(w3 +w?) 1
= BT S - )2 +

and express them in the form

A= Wi — (07 =A%),

where

and

p? = /At 4wl

Determine the normal modes A1 and Ay for w3 = 0.

Derive the following. The difference in the square of roots,
A3 — AT =247,

and the change in the normal modes due to coupling,

w% - A% = (:u2 - AQ))

wi = A3 = —(u® + A%,
and

wi — AT = (1 + A7),

wi = A3 = —(p? =A%)

(4.50a)

(4.50b)

(4.51a)
(4.51b)

(4.52)

(4.53a)

(4.53b)

(4.54a)
(4.54D)

(4.55)

(4.56)

(4.57)

(4.58a)
(4.58b)

(4.59a)
(4.59b)
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Using the above relations together with

wd = /(2 + A7) — A7) (4.60)

derive

- - (4.61a)

- = - . (4.61b)

(c) Argue that the solutions for the algebraic expressions in Egs. (4.51) can be expressed in the form

fl (w) = &1(&))5((&) — )\1)(&) + /\1)(w — AQ)(UJ + /\2)), (462&)
2(&))6((&)—)\1)(&)4‘/\1)(&) —/\2)(W+/\2)), (462b)

Za(w) =

N

where a1 (w) and as(w) are arbitrary. Using the property of d-functions show that

+d1/(\/\2)5(w — o) + @5@ + AQ)} , (4.63a)
2 2
fg (w) 1 ELQ(/\l) ZLQ(—/\l)
5 = 87m2[ N a( —/\1)+7)\1 0w+ A1)
+—a2/(\/2\2)6(w )+ 7“2(;;2)5@ + )\2)} . (4.63D)

The aribitrary coefficients are related due to the coupling in Eqgs. (4.50). Thus, verify that

N 24+ A2
a1(£N) = ’/52 —Raia(EN), (4.64a)

al(ﬂ:/\g) = — 3 —I—AQ dg(:l:/\g), (464b)
and
/142 — A2 B
ag(ﬂ:/\l) = ,LLQ —I—AQ al(:l:)\l), (465&)

_ [ 12 + A2
an(EN) = — ZQ Rz (Ehe). (4.65b)

Cdw .
z(t) = /_OO o e i (w) (4.66)
and the redefinitions
1 a(\) 1 ai(—=X\)
! 8mu? A1 ! 8mu2 A (4.672)
1 a 1 ai(—
) @ (2) By = L 0lA) (4.67b)
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which are determined by initial conditions, show that

x1(t) = At 4 BretMt 4 Ajem M2t 4 Boethat (4.68a)

_[pr A2 —iAgt iArt p? + A2 —iat irat
xg(t) = m[Ale B +B1€ ! - m AQe 2 +B26 25, (468}))

(d) For initial conditions

21(0) = 4, @1(0) =0, 22(0)=0, i2(0)=0, (4.69)
show that
A A? A?
z1(t) = ) 1+ oz cosAt+ [ 1— oz cos Aot | , (4.70a)
A w?
x2(t) = 2 cos A1t — cos Aat|. (4.70b)

(e) Sympathetic oscillations are characterized by the case

A < wi (4.71)
when A2 )
w
(HEF)NL M—gw , A~ whtwi, A~ wi— Wi, (4.72)
and
A —
x1(t) = 3 {cos)\lt + cos)\gt} = Acos (Al 5 /\2) t cos (Al _; /\2> t, (4.73a)
xo(t) = ? {cos A1t — cos )\2t:| = Asin </\1 ; )\2> t cos <)\1 ;)\2) t. (4.73b)

Plot 21 (t) anf x5(t) for we = 1.0lwy and w3 = 0.3w;, corresponding to ws ~ 10A. The following 21
minute long Veritasium YouTube video discusses synchronization in a variety of systems,

https://youtu.be/t-_VPRCtiUg,

Discuss if these examples constitute sympathetic oscillations.


https://youtu.be/t-_VPRCtiUg

Chapter 5

Lagrangian multiplier

5.1 Equation of constraint
1. (20 points.) Consider the function describing a paraboloid
fla,y) = a(a® + ). (5.1)
A straight line on the xy plane, y = mx + ¢, can be interpreted as a condition of constraint
glx,y) =y —mz—c=0. (5.2)
Let us determine the point on the line where the function f(x,y) has an extremum value.

(a) Construct the function
F(z) = f(x,mz + ¢). (5.3)

Using the extremum principle, dF'/dxz = 0, show that the point on the line where the function f is

an extremum is
me c

= —-——— pu— . 5.4
e s Dl i (5.4)
(b) Construct the function

h(z,y) = f(x,y) + Ag(z, y). (5.5)

Evaluate Vi, V f, and Vg. Show that Vh = 0 implies

Am A
_ A -2 5.6
T Y 2a (5.6)
Use this in the condition of constraint to derive

2ac
A= —— 5.7
1+ m? (5.7)

Use the above expression for A in Eq. (5.6) to find the point on the line where the function f is an
extremum.

2. (20 points.) Spherical pendulum: Consider a pendulum that is suspended such that a mass m is able to
move freely on the surface of a sphere of radius a (the length of the pendulum). The mass is then subject
to the constraint

1
¢:§(r-r—a2)20, (5.8)

where a factor of 1/2 is introduced anticipating cancellations. Consider the Lagrangian function

1
L(r,v):§mv~v+mg-r—|—T-V¢. (5.9)

o1
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Here ¢ represents the equation for the surface of constraint, such that the gradient V¢ is normal to the
surface. The Lagrange multiplier T is interpreted as the force that is entrusted with the task of keeping
the mass on the surface during motion. In this example of spherical pendulum T is the force of tension.
My recording on the topic of planar pendulum, available at

https://youtu.be/dTU9p9VyeqE (45 minute video),

is a resource.

(a) Evaluate the gradient V of the condition of constraint. Show that

Vé=r. (5.10)
(Hint: Use Vr = 1.) Thus, show that
T Vé¢=T r (5.11)
and )
L(r,v):§mv~v+mg-r—|—T-r. (5.12)

(b) Using the Euler-Lagrange equations derive the equations of motion
ma=mg+ T, (5.13)

where a is acceleration of mass m. Comparing Eq. (5.13) with the Newton equation of motion we
recognize the Lagrangian multiplier to be the force of tension. In particular, this specifies the direction
of T to be in the radially inward direction.

i. Equation of constraint: Find the projection of Newton’s law of motion along the direction normal
to the surface of constraint. Since r is normal to the surface of the sphere we have

ma-t=mg-t+ T -1, (5.14)

which corresponds to .
—m¢?a =mgcos¢p+ T -t (5.15)

ii. Equation of motion: By projecting in the tangential direction q{3 derive the equation of motion

ad = —gsin ¢. (5.16)
(¢) Evaluate the canonical momentum
L
p= g—v = mv. (5.17)
(d) Construct the Hamiltonian using
H(r,p)=v-p—L(r,v) (5.18)
to be
»?
H(r,p):%—mgm—T-r. (5.19)

Derive the Hamilton equations of motion to be

dr O0H p
d 0H
®_ T e+ T (5.20b)

dt or


https://youtu.be/dTU9p9VyeqE
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Derive the statement of conservation of energy
dH
— =0 5.21
o (5.21)

starting from the Hamiltonian in Eq. (5.19) and using Hamilton equations of motion. You will also
need to prove

dT
-— =0 5.22
ro— (5.22)
(e) Show that the angular momentum L = r x p satisfies the equation of motion
dL
o = rxms, (5.23)
and the angular momentum in the direction of g is conserved, that is,
d (g-L)=0 (5.24)
dt & - '
Area swept out by a particle as it moves along it’s trajectory is given by
1
o % dr. (5.25)

The rate at which this area changes is called the areal velocity. Thus, angular momentum is a measure
of areal velocity. So, conclude the conservation of areal velocity in the direction of g.

3. (20 points.) The Atwood machine consists of two masses m; and ma connected by a massless (inexten-
sible) string passing over a massless pulley. See Figure5.1. Massless pulley implies that tension in the
string on both sides of the pulley is the same, say T. Further, the string being inextensible implies that
the magnitude of the accelerations of both the masses are the same. Let mo > my.

Y1

]

Figure 5.1: example

(a) Let lengths y; and yo be positive distances from the pulley to the masses such that the accelerations
a1 = i1 and ag = §js satisfy as = —a; = a. Using Newton’s law determine the equations of motion
for the masses to be

mag — T = maa, (5.26a)
mig—T = —mja. (5.26b)

Thus, show that

Equation of motion: a = (w) g, (5.27a)
meo + My
2
Equation of constraint: T = 229 (5.27b)

(m1 +mgz)’
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(b) The constraint among the dynamical variables y; and ys is
1 t+y2 =1L, (5.28)

where L is the total length of the string connecting the two masses. Show that the Lagrangian for
Atwood’s machine can be expressed in terms of a single dynamical variable, say y2, as

. 1 .
L(y2,92) = §(m1 +m2)y3 + (ma — m1)gys. (5.29)

Find the corresponding Euler-Lagrange equation.

(c) Using the idea of Lagrange multiplier construct another Lagrangian

. . 1 . 0 1

L(y1,y2,91,92) = §m1yf + §mzy§ +migys + magys — T@(yl +y2— L)Qg, (5.30)
1

where T here is interpreted as the Lagrangian multiplier. Find the corresponding Euler-Lagrange

equations.

4. (20 points.) A mass mz is connected to another mass m; by a massless (inextensible) string passing
over a massless pulley, as described in Figure5.2. Surfaces are frictionless. Massless pulley implies that
tension in the string on both sides of the pulley is the same, say T'. Further, the string being inextensible
implies that the magnitude of the accelerations of both the masses are the same.

T
mi 1

Figure 5.2: Problem 4

(a) Let lengths 1 and ys be positive distances from the pulley to the masses such that the accelerations
a1 = %1 and ag = §o satisfy as = —a; = a. Using Newton’s law determine the equations of motion
for the masses to be

mag — T = maa, (5.31a)
T = mia. (5.31b)
Thus, show that
Equation of motion: a = (ﬁ) g, (5.32a)
mi + mo

Equation of constraint: T = (ﬁ) mig. (5.32b)
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(b) The constraint among the dynamical variables x; and ys is
z +ys =L, (5.33)

where L is the total length of the string connecting the two masses. Show that the Lagrangian
describing the motion can be expressed in terms of a single dynamical variable, say yo, as

. 1 .
L(yz2,92) = 5 (ma1 + ma)y3 + magys. (5.34)
Find the corresponding Euler-Lagrange equation.

(c) Using the idea of Lagrange multiplier construct another Lagrangian

. 1 . r 0 1
L(x1,y2,81,02) = 5mad? + =mags + magys — To— (21 +y2 — L)*5, (5.35)
2 2 0x1y 2
where T here is interpreted as the Lagrangian multiplier. Find the corresponding Euler-Lagrange

equations.

5. (20 points.) (Incomplete, Needs refinement.) A mass m slides down a frictionless ramp that is
inclined at an angle @ with respect to the horizontal. Assume uniform acceleration due to gravity ¢ in the
vertical downward direction. In terms of a suitable dynamical variable write a Lagrangian that describes
the motion of the mass.

Figure 5.3: Problem 5.

(a) Relevant coordinates are related by a rotation

()= (o) () 50

(b) In terms of dynamical variables z and gy the constraint

Y ="Yo (5.37)
is given by
Zsina + g cosa = yp, (5.38)
such that Zsina = —ycos . Show that the Lagrangian is, say in terms of ¥,
. 1 . 1 .
L(g,5) = 5ma® + 5mij* — mgy (5.39a)
1 .
= imgjz csc? a — myy. (5.39b)
Show that the equations of motion are
j=—gsin®a. (5.40)

In conjunction with the constraint show that this implies

VI+y=gsina. (5.41)
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(¢) In terms of dynamical variables x and y we have §j = 0. Show that the Lagrangian is, say in terms
of x,

1
L(z, ) = 5m:1'72 + mgzsin a. (5.42)

Find the corresponding Euler-Lagrange equation.

(d) Using the idea of Lagrange multiplier construct another Lagrangian

1 1 0 1
L(z,y,2,9) = Emj:2 + imy2 — mg(sin ax + cos ay) + Na—y(y — y0)2§, (5.43)

where N here is interpreted as the Lagrangian multiplier. Find the corresponding Euler-Lagrange
equations.

6. (20 points.) Consider a wheel rolling on a horizontal surface. The following distinct types of motion are

Figure 5.4: Problem 6.

possible for the wheel:
x < OR, slipping (e.g. in snow),
x =6R, perfect rolling, (5.44)
x > 0R, sliding (e.g. on ice).

Differentiation of the these relations leads to the characterizations, v < wR, v = wR, and v > wR,
respectively, where v = & is the linear velocity and w = 6 is the angular velocity. Assuming the wheel is
perfectly rolling, at a given instant of time, the tendency of motion could be to slip, to keep on perfectly
rolling, or to slide.

Deduce that while perfectly rolling the relative motion of the point on the wheel that is in contact with
the surface with respect to the surface is exactly zero. Thus, conclude that the force of friction on the
wheel is zero. The analogy is a mass at rest on a horizontal surface. However, while perfectly rolling, it
is possible to have the tendency to slip or slide without actually slipping of sliding. The analogy is that
of a mass at rest under the action of an external force and the force of friction. In these cases the force of
friction is that of static friction and it acts in the forward or backward direction.

In the following we differentiate between the following:

(a) Tendency of the wheel is to slip (without actually slipping) while perfectly rolling.

(b) Tendency of the wheel is to keep on perfectly rolling.

(¢) Tendency of the wheel is to slide (without actually sliding) while perfectly rolling.
Deduce the direction of the force of friction in the above cases. Determine if the friction is working against
linear acceleration or angular acceleration.

Perfect rolling involves the contraint = §R. Thus, using the D’Alembert’s principle and idea of Lagrange
multiplier we can write the Lagragian for a perfectly rolling wheel on a horizontal surface to be

. 1 1 .
L(z,4,0,0) = §mj;2 + 5192 — Fy(x — OR), (5.45)
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where m is the mass of the wheel, I is the moment of inertia of the wheel, and Fs is the Lagrangian
multiplier. Using D’Alembert’s principle give an interpretation for the Lagrangian multiplier Fs. What is
the dimension of F,? Infer the sign of Fy for the cases when the tendency of the wheel is to slip or slide
while perfectly rolling.

. (20 points.) Counsider two discs of radii r; and ry, and moment of inertia I; and Iy. Disc 1 is free to

roll about an axis parallel to z axis passing through its center O;. Similarly, disc 2 is free to roll about
an axis parallel to z axis passing through its center Os. Further, the center of disc 2 is free to move on a
circle of radii (r1 + 72). Let I3 be the moment of inertia of disc 2 about the axis passing through O;. See
Figure 7. Assume gravity in the direction of z axis and no motion in the z direction so that gravity effects
are irrelevant. The two discs are in contact with sufficient friction between them such that the resultant
motion leads to perfect rolling of the surfaces,

6‘17‘1 = 6‘27‘2. (546)

Here 6, and 6 are angular displacements of the respective discs about the axes O; and O3. Further, the
angular displacement of the axis O about the axis O; is parametrized by the angular displacement as.
Assume the discs are rolling under the action of no external torques.

Figure 5.5: Problem 7.

(a) Show that the Lagrangian for this system in terms of the coordinates 6, and ag, and their derivatives,
is

. 1. 1. 1
L(01,61, az, ) = 5119%’ + 5129;% + 513515 (5.47a)
1 T% o 1. .o
= 5 (Il + IQE) 91 + 5[30&2, (547b)
where the equation of contraint has been used to replace #>. Determine the equations of motion to
be
r2\
(Il + 12—2) fL =0 (5.48)
T3
and
Iscey = 0. (5.49)

These imply 6, = 0 and > = 0 in the absence of external torque.
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(b) Show that the Lagrangian for this system in terms of the coordinates 67, 62, and s, and their
derivatives, is

. . 1 . 1 . 1
L(91,61,92,92,ag,d2) = 5]19% + 5[26‘% + 5[3042 + )\(917‘1 - 927‘2), (550)

where the contraint has been introduced with Lagrange multiplier A\. Determine the equations of
motion to be

Ilél = )\7‘1, (551&)
Ly = —\r, (5.51b)
13542 = 0. (551C)

Combine Egs.(5.51a) and (5.51b) and show that it is consistent with Eq.(5.48).
(¢) Which quantity relates to the Lagrange multiplier A.

(d) In the absence of external torque and &s = 0 initially deduce that the center of mass of disc 2 is
stationary.



Chapter 6

Stationary action principle (with
variations at boundary)

6.1 Variation at the boundary

1. (20 points.) The Hamiltonian is defined by the relation

H(pi,girt) = > pidi — L(as, i, 1)- (6.1)
Show that i BH oL
B 6.2
dt ot ot (62)
Under what circumstances is H interpreted as the energy of the system?
2. (30 points.) Consider the Lagrangian
1 dr\?
(a) Show that principle of stationary action with respect to dr implies Newton’s second law
d’r

(b) Show that principle of stationary action with respect to §t implies

d |1 [dr\® oV
which for a static potential, 9V/dt = 0, is the statement of conservation of energy.

(¢) Show that the invariance of the total time derivative term, that gets contributions only from the end
points, under an infinitesimal rigid rotation

r =r — fr, dr = dw x r, (6.6)
implies the conservation of total angular momentum, L = r X p.
3. (40 points.) In terms of the Lagrangian function L(r,v,t) the action functional Wr; ¢y, t5] is defined as

ta
W[I';tl,tQ] = / dtL(I‘,V,t), (67)

ty

where v = dr/dt.

99
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(a) For arbitrary infinitesimal variations in the path
r(t) =r(t) — or(t), (6.8)
and infinitesimal general time transformation
t=t—dt(t), (6.9)

the change in action is given by

SW = /tt dt% [p-ar— H5t]

b2 dH L 0L d oL

where the canonical momentum and the Hamiltonian are defined as

p:g—i and H=v-p—1L (6.11)

respectively.

(b) The change in the action due to variations in path is captured in the functional derivative

The change in the action due to time transformation is captured in the functional derivative

W _ (CICZ_I:JF%_/;) - {5(t—t2)—5(t—t1)}H. (6.13)

St(t)

(¢) In terms of the Hamiltonian the action takes the form

Wir, p:t1,to] = /t2 dt [v-p_H(r,p,t)]. (6.14)

t1

(d) Show that for for arbitrary infinitesimal variations in coordinate and momentum
F(f) = x(t) — or(t) and B(t) = p(t) — Ip(t), (6.15)

and infinitesimal general time transformation, the change in action is given by

SW = /tt dt% [p e — Hat}

t2 dH OH dp OH dr  OH
+/tl dt|:5t<ﬁ—g)—5r<a+g>+5p<a—%):| (616)

4. (20 points.) In terms of the Lagrangian function L(r,v,t) the action W/r;ty, 2] is defined as

ta
Wlr;ty, to] = / dt L(r,v,t), (6.17)
t1
where v = dr/dt. Find the change in the action under an infinitesimal general time transformation
t=1t—0t(t), ot(t1) =0, dt(t1)=0. (6.18)
In paticular, evaluate the functional derivative
oW
— 6.19
ot (t) ( )

for the variation 6t(t) satisfying the constraints of Eq. (6.18).
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6.2 Symmetry and conservation principles

5. (20 points.) Consider infinitesimal rigid translation in space, described by
or =de, dp=0, ot=0, (6.20)
where Je is independent of position and time.

(a) Show that the change in the action due to the above translation is

oW 2 9H
¥ —_ ‘/t1 th' (6.21)

(b) Show, separately, that the change in the action under the above translation is also given by

SW [ dp

S =), dtgr =Pt () (6.22)

This states that linear momentum is the generator of rigid translation in space.

(¢) Together, we have the relation connecting linear momentum and impluse,
ta
p(t2) —p(t1) = / dtF, (6.23)
ty

where we used

The system is defined to have translational symmetry when the action does not change under rigid
translation. Show that a system has translation symmetry when

OH

—5o =0. (6.25)

That is, when the Hamiltonian is independent of position. Or, when the force F = —9H/0r = 0.

(d) Deduce that the linear momentum is conserved, that is,
p(t1) = p(t2), (6.26)
when the action has translation symmetry.
6. (20 points.) Consider infinitesimal rigid translation in time, described by
or=0, 0p=0, It =>7de (6.27)
where Je is independent of position and time.

(a) Show that the change in the action due to the above translation is

oW 2 9H
— = dt—. 6.28
de /t1 ( )

(b) Show, separately, that the change in the action under the above translation is also given by

SW 2 dH
- = —/t dt— = —H(ts) + H(t1). (6.29)

This states that Hamiltonian is the generator of rigid translation in time.
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(¢) The system is defined to have translational symmetry when the action does not change under rigid
translation. Show that a system has translation symmetry when

OH
——r =0. (6.30)

That is, when the Hamiltonian is independent of time.
(d) Deduce that the Hamiltonian is conserved, that is,
H(ty) = H(ta), (6.31)
when the action has translation symmetry.

7. (20 points.) A general rotation in 3-dimensions can be written in terms of consecutive rotations about
x, y, and z axes,

x4 1 0 0 cosfy 0 —sinfy cosfl3 sinfz 0 1
25 | =0 cosfy sinby 0 1 0 —sinf3 cosfs 0 T (6.32)
xh 0 —sinf; cosbf; sinfly 0 cosfy 0 0 1 T3
For infinitesimal rotations we use
cosf; ~ 1, (6.33a)
to obtain
l‘ll 1 593 —692 I
x’3 592 —591 1 I3
Show that this corresponds to the vector relation
r=r—8§0 xr (6.35)
such that
dr =40 x r, (6.36)
where
r = 11X + T2y + 232, (6.37a)
00 = 601%x + 662y + 9032. (6.37b)

As a particular example, verify that a rotation about the direction z by an infinitesimal (azimuth) angle
d¢ is described by

00 = z0¢. (6.38)
The corresponding infinitesimal transformation in r is given by
or =8¢z X T = @ pdh, (6.39)

where p and ¢ are the cylindrical coordinates defined as
zXxr=¢ and |zXxr|=p. (6.40)
Observe that, in rectangular coordinates qu; =y — yX.
8. (20 points.) Consider infinitesimal rigid rotation, described by
dor=60 xr, dp=460 xp, Ot=0, (6.41)
where dd0/dt = 0.
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(a) Show that the variation in the action under the above rotation is

sW 2 oL OL
— = dt — — 6.42
60 . [rx 8r+px<9p] (6.42)
. ) ! 0 0
w 2 H H
—_— == dt — — . 6.43
56 /t {rx ar +pxap] (6.43)
Show, separately, that the change in the action under the above rotation is also given by
SW 2 dL
— = dt— = L(to) — L(t 6.44
5o = ), g =) L) (6.44)

where L = r X p is the angular momentum. This states that angular momentum momentum is the
generator of rigid rotation in space.

The system is defined to have rotational symmetry when the action does not change under rigid
rotation. Show that a system has rotation symmetry when

oL oL

rxa:() and px%:O, (6.45)
o oH oH
r X W =0 and p X % =0. (646)
Show that this corresponds to
oL oL
0= 0 and e 0, (6.47)
o oH oH
50 0 an 30 0 (6.48)

That is, when the Lagrangian is independent of angular coordinates 6 and ¢.

Deduce that the anglular momentum is conserved, that is,
L(t1) = L(t2), (6.49)

when the action has rotational symmetry.

9. (20 points.) Noether’s theorem, in the context of rotational symmetry, states that if the Lagrangian
does not change under an infinitesimal rigid rotation, then the angular momentum L = r X p is conserved.
Prove that the converse of Noether’s theorem is also true. For simplicity consider velocity independent
potentials.
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Chapter 7

Canonical transformation

7.1 Hamilton-Jacobi equation

1. (40 points.) The Hamiltonian for the motion of a particle of mass m in a constant gravitational field

g=—gzis
2
H(z,p,t) = o + mgz. (7.1)

(a) Show that the Hamilton equations of motion are

dz P
= -2 7.2
dt m’ (7:22)
dp
— = —myg. 7.2b
i (7.2b)
(b) Show that the Hamilton-Jacobi equation
ow ow
T ( E’t) : (7.3)

in terms of Hamilton’s principal function W(z,t) is given by

ow 1 [ow\?
Further, show that
W(z,t) = —Ft— ;mi;n(E — mgz)% (7.5)

is a solution to the Hamilton-Jacobi equation up to a constant.
(¢) Hamilton’s principal function allows us to identify canonical transformations Q = Q(z,p,t) and
P = P(z,p,t), such that

ow ow ow

— = —=-—-P — =—-H .
5 P 90 , 5 ; (7.6a)
ow ow
ap 0, 9P 0, (7.6b)
with the feature that the new coordinates are constants of motion,
dQ dP

65
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To this end, choose @ = E and then evaluate

Hint: Use p = %—VZV.
(d) Show that

P=t+ 2,
mg

is a canonical transformation. That is, show that [Q, P]?’E' = 1. Further, verify that

aQ
a Y
dP
a =Y

K(@.P.0) = HEzp.t)+ 5 <0,

7.2 Poisson braket

1. (40 points.) Type notes dated 2022 Mar 29.

2. (20 points.) Given F and G are constants of motion, that is

[FH] D =0 and  [G.H] D =0.

(7.8)

(7.9a)

(7.9b)

(7.10a)
(7.10b)

(7.10¢)

(7.11)

Then, using Jacobi’s identity, show that [F, G} f:']s' is also a constant of motion. Thus, conclude the

following:

(a) If L, and L, are constants of motion, then L, is also a constant of motion.

(b) If p; and L, are constants of motion, then p, is also a constant of motion.

3. (20 points.) Hamiltonian for the motion of a ball (along the radial direction) near the surface of Earth

is given by
2
H(zp) = 2 gz,
(a) Determine the equations of motions using
dz OH dp, 0H
- =_— and =——.
dt  Op, dt 0z

Then, solve the coupled differential equations to find the familiar elementary solution

2(t) = 2(0) + Z#t—i— %th

and
p:(t) = p.(0) + mgt.

(7.12)

(7.13)

(7.14a)

(7.14b)
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(b) Next, determine the equations of motion using

dz(t) P.B.
dt - [Z(t)aH}xﬁpa
dp.(t) P.B.
dt - [pz(t)’H]x,p :
Evaluate
2
T (a0, 100,
d3z(t) P.B. P.B. P.B.
dt3 = [[[Z(t)’H]x,p,O’H]x,p,O’ }x,p,()7
and
d?p,(t B. B.
fl)ﬁ() = [[ Z(t)’Hﬁ,ls,o’Hﬁ,i,o’
d3p.(t) P.B. P.B. P.B.
dt3 = [[[pz(t),H} x,p,O’H} x,p,O’H}x,p,O’

Then, using

t? (d?z

«(t) = =(0) + & {%}t_ﬁ L {%}f

t (dp, t* [ d*p.
(1) = p.(0) + — L
P () p()+1!{dt}t_0+2!{dt2 o

and

rederive the solutions in Egs. (7.14).

4. (20 points.) Harmonic oscillations are described by the Hamiltonian

1 1
H(z,p) = 51’2 + §$2-

(a) Determine the equations of motions using

dr  OH dp  OH

@ o M T T T

Then, solve the coupled differential equations to find the solutions

z(t) = x(0) cost + p(0) sint,
p(t) = —x(0)sint 4 p(0) cost,

where 2(0) and p(0) are given using the intial conditions at ¢t = 0.

(b) Next, determine the equations of motion using

dx(t) P.B.
e [x(t),H]xﬁp,
d];—it) = [p(t), H] .
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(7.15a)

(7.15b)

(7.16a)

(7.16b)

(7.17a)

(7.17b)

(7.18)

(7.19)

(7.20)

(7.21)

(7.22a)
(7.22b)

(7.23a)

(7.23b)
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Evaluate the following nested commutation relations,

[ o), HY o H] ] (7.24)
and
[ o), B H] ] (7.25)

iteratively. Thus, evaluate

d™z(t) _ x(t) z”,_l for n=0,2,4,..., (7.26)
dtn p(t)i"~ ', for n=1,35,...,
and
d™p(t) _ p(t)i ) for n=0,2/4,..., (7.27)
dtn —x(t)i"~t, for n=1,35,....
Then, using the above in the Taylor expansion,
t (dx t2 (d%x
t) = ) et L e . 2
x(t) = z(0) + T {dt }t_o + 51 {dt2 }t—o + (7.28)
and ) e
_ t (dp t* (dp
p(t) = p(0) + m {dt }t_O + o1 {dt2 }t_O +-- (7.29)
rederive the solutions in Egs. (7.22).
7.2.1 Lie Algebra of Poisson braket
1. (40 points.) For two functions
A = A(x,p,t), (7.30a)
B = B(x,p,t), (7.30b)

the Poisson braket with respect to the canonical variables x and p is defined as
[A,B}":—-———- . (7.31)

Show that the Poisson braket satisfies the conditions for a Lie algebra. That is, show that

(a) Antisymmetry:

[4,B] > =—[B, Al (7.32)
(b) Bilinearity: (a and b are numbers.)
[aA+bB,C], > = a[A,C], > +b[B,C]. (7.33)
Further show that
[AB,C]. > = A[B,C], .+ [A.C], B (7.34)
(¢) Jacobi’s identity:
P.B.{P.B. P.B.1P.B. P.B.{P.B.
[A’ [B’ C']x,p ]x,p + [B’ [O’ A]x,p }x,p + [O’ [A’ B} X,p }x,p =0. (735)
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2. (40 points.) Show that the commutator of two matrices,
[A, B} = AB - BA,
satisfies the conditions for a Lie algebra, as does the Poisson bracket. In particular show that

(a) Antisymmetry:
[A,B] = —[B,A].

(b) Bilinearity: (a and b are numbers.)
[aA +bB,C] = a[A,C] +b[B,C].

Further show that
[AB,C| = A[B,C] + [A,C]B.

(c) Jacobi’s identity:
[A,[B,C]] + [B,[C,A]] + [C,[A,B]] =0.

3. (40 points.) Show that the vector product of two vectors, in this problem denoted using
[A, B} = A x B,
v
satisfies the conditions for a Lie algebra, as does the Poisson bracket. In particular show that

(a) Antisymmetry:
[A.B] = [B.A].

(b) Bilinearity: (a and b are numbers.)
[aA +bB,C| =a[A,C|] +b[B,C], .

Further show that
[A X B,C]v = A x [B,CL} + [A,CL} x B.

(¢) Jacobi’s identity:
[A’ [B’ C]v]v + [B’ [C’A]v]v + [C’ [A’B}v}v =0.

4. (40 points.) Construct a problem on Heisenberg group, Weyl algebra, Bergman-Segal space.

5. (40 points.) (Refer Sec. 21 Dirac’s QM book.)
The product rule for Poisson braket can be stated in the following different forms:

[AlAQ, B} :]s = Al [A27 B] ,1:1}?; + [Al’B] i,]sAz’
[A,BiBy] = Bi[A,Ba] [+ [A, Bi] ) Bo.

(a) Thus, evaluate, in two different ways,

(414, BiBo], " = AvBi[As, Ba), o + Ar[Az, By, B
1B [Al,Bz}iﬁ'AQ T [Al,Bl}i‘szAg,

[AlAQ,BlBQ]i‘j - BiA [AQ,Bg]i‘j + B [Al,Bg]ii'Ag
+A1[Az, By], 2 By + [A1, Bi],,  As B,
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(7.36)

(7.37)

(7.38)

(7.39)

(7.40)

(7.41)

(7.42)

(7.43)

(7.44)

(7.45)

(7.46a)
(7.46b)

(7.47a)

(7.47D)
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Subtracting these results, obtain
P.B. P.B.
(AlBl — BlAl) [AQ, Bz]x,p = [Al, Bl]x,p (AQBQ — BQAQ). (748)

Thus, using the definition of the commutation relation,

[A,B] = AB — BA, (7.49)
obtain the relation - -
(41, B1] [As, Bo] ™% = [A), B/ "2 [As, Bo). (7.50)
X,p xX,p
Since this condition holds for A; and B; independent of As and Bs, conclude that
[Al, Bl] = ’Lh[Al, Bl}ii’ (751&)
(A2, By] = ih[As, Ba] 0, (7.51b)

where il is necessarily a constant, independent of A, As, By, and Bs. This is the connection between
the commutator braket in quantum mechanics and the Poisson braket in classical mechanics. If A’s
and B’s are numbers, then, because their commutation relation is equal to zero, we necessairily have
h = 0. But, if the commutation relation of A’s and B’s is not zero, then finite values of A is allowed.

Here the imaginary number ¢ = v/—1. Show that the constant % is a real number if we presume the
Poisson braket to be real, and require the construction

C:%MB—BM (7.52)

to be Hermitian. Experiment dictates that h = h/27w, where
h~6.63x 1073 Js (7.53)

is Planck’s constant with dimensions of action.

7.3 Charge in a magnetic field

1. (30 points.) Hamiltonian for a charge particle of mass m and charge ¢ in a magnetic field B is given by

where
B=V xA. (7.55)
Let 9A

Further, the magnetic vector potential A(x,t) is presumed to be independent of p.

(a)

Show that the Hamilton equations of motion leads to the equations, using (v = dx/dt)

mv = p—qA, (7.57a)
CCZZ—I; = q(VA)-v. (7.57b)

Show that the above equations in conjunction imply the familiar equation

d
md—: = qv x B. (7.58)



7.4. INFINITESIMAL CANONICAL TRANSFORMATION 71

(b)

(©)

(d)

(e)

(2)

Evaluate the Poisson braket

[x,x],, =0 (7.59)
Evaluate the Poisson braket
i PB 1y
[x',v ]x)p = ml . (7.60)
Evaluate the Poisson braket
]y =17, (7.61)
Evaluate the Poisson braket
(v mvi] > = (VIAT — WIAT), (7.62)
Verify that o o N
(VIA) — VIAY) = £9FBF = -1 x B. (7.63)

Poisson bracket in classical mechanics has direct correspondence to commutation relation in quantum
mechanics through the factor ih, which conforms with experiments and balances the dimensions.
Then, we can write
[mv', mv?| = ihge"*B* (7.64)
or
mv X mv = ihgB, (7.65)

using the fact that the commutator and the vector product satisfies the same Lie algebra as that of
Poisson bracket.

Evaluate the Poisson braket

PB. _ ¢
xp m

[p’,v7] VIAJ. (7.66)

Using the antisymmetry property of the Poisson bracket conclude that

PV + VP = (VA - VIAY), (7.67)
Thus, show that
[pi,vj}i]j + [vi,pj]iﬁ' = —%1 xB= %siijm. (7.68)

Deduce the corresponding expression in quantum mechanics to be

PXV+Vxp=ihiLlB. (7.69)
m
Evaluate the Poisson braket
P.B.
[p.p],, =0 (7.70)

7.4 Infinitesimal canonical transformation

1. The generator for rotations satisfies the equations

Show that

V.G = —dw X p, (7.71a)
VG = dw xr. (7.71b)
G=6w-L (7.72)

is a solution for the generator, where L = r X p is the angular momentum,



72

CHAPTER 7. CANONICAL TRANSFORMATION



Chapter 8

Kepler problem

8.1 Ellipse

Refer Notes on Quantum Mechanics.

8.2 Conserved quantities

1. (20 points.) Let r; and ry be the postions of masses m; and ma, respectively, with repect to an inertial
frame. The gravitational interaction energy between the two masses is given by

Gmlmg (8 1)
|I‘1 — I‘2| ’ ’

Assume that the masses have no other internal or external interaction. The position of the center of mass
R is defined by

(m1 4+ m2)R = myry + mors (8.2)
and the relative position between the masses is given by
r=rs—rj. (8.3)
What is the motion of the center of mass R with respect to the position ry.

(a) Stays fixed.
(b

(c
(d

Circular.

Elliptic (or conic section).

None of the above.

Hint: The positions represented by the vectors ri, ro, and R are collinear. Further, r describes an ellipse.
Solution: Show that

ma2

R-ri=—"— 8.4
ry m1+m2r7 ( a‘)
R-ry= —— " (8.4b)
mi + mo

Then, using r is elliptic, conclude that R — r; describes an ellipse whose length is scaled down by the
factor m;/(my + ma2).
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2. (20 points.) (Refer Schwinger’s QM, chapter 9) The Hamiltonian for a Kepler problem is

H =

Pt p __
2m1 2m2 |I‘1 — I‘2| ’

(8.5)

where r; and ry are the positions of the two constituent particles of masses m; and ms.

(a) Introduce the coordinates representing the center of mass, relative position, total momentum, and
relative momentum:

ry + r —
R: w, r:rl_rz, P:p1+p2, p:w, (86)
mip + ma my + me

respectively, to rewrite the Hamiltonian as

Pz p2 o«
H=—+"——— 8.7
2M  2u 1’ (87)
where ) . .
M =mq 4+ mao, -_= — + —. (88)
1% mq mo
(b) Show that Hamilton’s equations of motion are given by
dR P dp d d
®R_P dP_, dr_p dp_ or (59)
d M dt dt p’  dt r3

(¢) Verify that the Hamiltonian H, the angular momentum L = r X p, and the Laplace-Runge-Lenz

vector I
A=T PxX2 (8.10)

r Qo

are the three constants of motion for the Kepler problem. That is, show that

dH

dL
R —
dt ’

dA
—— =0 =
dt ’

— =0 (8.11)

3. (20 points.) The Hamiltonian for a Kepler problem (or a classical hydrogenic atom) is

2
p (e%

where r = |r| and p = |p|. The Hamilton’s equations of motion for the Kepler are

dr p dp r
_ P = —a—. 8.13
.  m’ dt 4 ( )

The Hamiltonian H, the angular momentum L = r X p, and the Laplace-Runge-Lenz vector

A=t Lo, (8.14)

T mo

are the three constants of motion for a Kepler problem. Under the special circumstance when r = |r| is

also a conserved quantity, that is,

dr

— =0, 8.15

p (8.15)
we have the case of circular motion. Evaluate the Laplace-Runge-Lenz vector for this case of circular
orbit.
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4. (50 points.) The Hamiltonian for a Kepler problem is

2
p (07

The Hamiltonian H, the angular momentum L = r X p, and the axial vector

AL _pxL (8.17)

r po

are conserved quantities for a Kepler problem.

(a)

(e)

Show that
o
W = 57 A xL (8.18)

is also a conserved quantity. That is, show that dW /dt = 0. Thus, together, the vectors L, A, and
W, form an orthogonal set that remain fixed in time. Show that the vector W can be expressed in

the form
1!

W=p+ ﬁf x L. (8.19)
Further, show that
A
W = pa—. 8.20
pag (8.20)

Determine the components of the momentum p along these orthogonal vectors by evaluating (p - ]c_,),
(p-A), and (p - W). Thus, construct the momentum p in the form

p=p-L)L+(p-A)A+(p-W)W. (8.21)
Hint: Show that )
p-L=0, p-A=p-r, p-WZ%—i—uH. (8.22)

It is well known that the position r traverses an ellipse about the origin. This is the content of
Kepler’s first law of motion. Show that the momentum p traverses a circle about a fixed point pyg.
That is, show that the momentum p satisfies the equation of a circle,

P —Pol = ¢. (8.23)

Hint: Rewrite the expression for (p - W) inthe foomp-p—2p- W+ W -W =W?2—-2,H.
Determine the vector pgy representing the center of this circle, and find the radius ¢ of this circle.
Verify that the center pg is a conserved quantity.

Solution: pp = W and ¢ = pa/L.

Show that when the position r traverses a circle (A = 0) the center of the circle traversed by
momentum p is the origin.

8.3 Kepler orbits

1. (20 points.) Starting from the Lagrangian for the Kepler problem,

1
Lir,v) = 5m® + % (8.24)

derive Kepler’s first law of planetary motion, which states that the orbit of a planet is a conic section. In
particular, derive

7o

") = T ecos@ =)’

(8.25)
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which is the equation of a conic section in terms of the eccentricity e and a distance ryg. The distance rg
is characterized by the fact that the effective potential

L? Q
U =—= — — 8.26
eH(T) 2‘u,r_2 r ( )
is minimum at rg. We used the definitions, L, = ;u“2q5,
L Uett(ro) = —— p— (8.27)
rg = —= efi(T0) = —5—, e=y/1— : :
07 pa’ o 2rg Uest(ro)

Thus, the orbit of a planet is completely determined by the energy F and the angular momentum L.,
which are constants of motion.

. (20 points.) In the Kepler problem the orbit of a planet is a conic section

To

1+ ecos(¢ — ¢o)

expressed in terms of the eccentricity e and distance 7. Determine the constant ¢g to be 0 by requiring
the initial condition

r(g) = (8.28)

o
0) = . 8.29
"(0) = 7 (5.29)
This leads to r
0
= . 8.30
() = (5.:30)
The distance rq is characterized by the fact that the effective potential
L? «
Ug(r) = —2 — — 8.31
W) = 52— 2 (5:31)
is minimum at rg. We used the definitions
L Usit(ro) = —— - _r (8.32)
ro = —= efi(ro) = —5—, e=y/1- : '
0T o 2rg Uett(10)

Thus, the orbit of a planet is completely determined by the energy E and the angular momentum L.,
which are constants of motion. The statement of conservation of angular momentum can be expressed in
the form
dt = £ 124y, (8.33)
L,
which is convenient for evaluating the time elapsed in the motion. For the case of elliptic orbit, Udg(rg) <
E < 0, show that the time period is given by

2m 2
_ o 2m
=— . 8.34
/ 1+ecos¢) L, (1—@2)% ( )
Show that at point ‘2’ in Figure 2
¢ = g and 7 = rq. (8.35)
The time taken to go from ‘1’ to ‘2’ is given by (need not be proved here)

T4 l1+e

{4 4 [1—e 2e 5
o = / (b 1+ecos¢) — (;tan —?\/1—e>. (8.36)
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Figure 8.1: Elliptic orbit

Evaluate t1_,5 for e = 0 and e = 1. Show that at point ‘3’ in Figure 2

¢=m—tan"! (17_62> , and r=a. (8.37)

e

The time taken to go from ‘1’ to ‘3’ is given by (need not be proved here)

1P
. o /ﬂtan 1(‘ lc ) d¢ T(Q) - T 1 2e (8 38)
L (1+ecosg)? 4 T ) '

Similarly, the time taken to go from ‘3’ to ‘4’ is given by (need not be proved here)

™ 2
I rH T 2e
t = — dpre———=—(14+—. 8.39
ST /Tr—tan1<\/1€€2> ¢(1 +ecosp)? 4 ( + 7T) (8:39)

Evaluate the time elapsed in the above cases for e — 0 and e — 1. The eccentricity e of Earth’s orbit is
0.0167 and timeperiod T is 365 days. Thus, calculate

t153 —t12 (8.40)

for Earth in units of days.
Solution: ~ 1 day for Earth.

3. (20 points.) Refer to the essay by J. M. Luttinger titled ‘On “negative” mass in the theory of gravitation’
in 1951.

(a) Reproduce all the equations in the essay.

(b) Critically assess the logic of the arguments in the essay.

8.4 Precession of the perihelion

1. (20 points.) The effective potential energy for the Kepler problem is

L? o
- 2/1/{‘2 - ?, (841)

Uest (1)

where the first term is the energy associated with the centrifugal force and the second term is the gravi-
tational potential energy. Show that the equilibrium point for the above potential energy function is

L2

= (8.42)

To
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and the corresponding minimum energy is

«
Uenr(ro) = =5 - (8.43)

For total energy E < 0 show that the potential energy function have two turning points,

To

min — 8.44
r T e (8.44)
and "
0
max — ; 8.45
Tma 1—e ( )
where the eccentricity e is given by
E
e=4/1— . 8.46
UCH'(TO) ( )
Next, consider a perturbation to the effective potential energy,
L2 a [
!/ _ z
Ueg(r) = 2 (8.47)
such that 5
g BT _ 6—3’2 < 1. (8.48)
afrg  arg
To the leading order in k, show that the shift in the equilibrium point is
7o =1o(1 + 3K) (8.49)
and the leading order shift in the minimum energy is
(QOf):(kHV®{1_2K] (8.50)
Show that the leading order shifts in the turning points are
1 2
Thin = Tmin |:1 + “( *e) :| (8.51)
e
and )
1 —
T ax = Tmax [1 - nﬂ} : (8.52)
e

After the perturbation the trajectory is no more an ellipse. Nevertheless, for small perturbation we can
define the leading order shift in the eccentricity using

/ /

T T

a:ﬁﬁiﬁﬁ. (8.53)
Evaluate oo
1—
e =e {1 - n%] . (8.54)

Tllustrate the above shifts in the plot for effective potential energy.

2. (20 points.) (Resource: Lecture from [2024S].) Kepler problem is described by the potential energy

U@r)=-2, (8.55)


https://youtu.be/u8yxqKn2I6M
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and the corresponding Lagrangian

1
L(r,v) = —w? + g (8.56)
2 r
The angular momentum .
L.=ur?¢ (8.57)
and the energy
1 112 «
E=_u?+-—"%—— 8.58
e + 2ur? r (8:58)

and constants of motion in the Kepler problem. For the case when the energy F is negative,

L2
2 E<0,  py ==, (8.59)
279 jie’
where L, is the angular momentum, the motion is described by an ellipse,
To FE
= =4/1 . 8.60
r¢) 1+ ecos(¢ — ¢o)’ c * (a/2rg) (8.60)

Perihelion is the point in the orbit of a planet when it is closest to the Sun. This corresponds to ¢ = ¢g. The
precession of the perihelion is suitably defined in terms of the angular displacement A¢ of the perihelion
during one revolution,
Tmax
Ap=2 {/ d¢] — 27, (8.61)
Tmin
where one revolution is defined as twice the transition between points when the planet is closest and

farthest from Sun in terms of ,
0

min — 8.62
r Tt e (8.62)
the perihelion, when the planet is closest to Sun, and
70
max — 8.63
Tma: 1—e ( )

is the aphelion, corresponding to ¢ = ¢y + m, when the planet is farthest from Sun.

(a) For the Kepler problem, starting from the expression for energy and angular momentum, derive the

relation 4 )
dp = 0 . (8.64)

Toye-(-n)

The precession of perihelion is zero for the Kepler problem. Show this by evaluating

A =2 /H rodr ! —or. (8.65)

T Jer— (1-m)?

This is easily achieved by substituting
1- 0 = _ecosd, (8.66)
r

with the associated differntial statement

rodr

—o = esinfdd, (8.67)
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and the related changes in the limits of integration

7o

= =0 8.68
"T1te ’ (8.68)
o
= 0= 8.69
R p— i (8.69)
to obtain .
Ap=2 {/ d@] — 27 =0. (8.70)
0
(b) When a small correction
SUG) = -5 = wu (TO)B (8.71)
r)= 3 = KUy r 5 .
expressed in terms of dimensionless parameter x using the relation f = —xUgrg, is added we have
the perturbed potential energy
_ o B __ain (T_of
U(r) = C T o [r +kK . . (8.72)

Show that the precession of the perihelion due to this perturbation is

678

A¢p = -3k = 5 -
arg

(8.73)



Chapter 9

Special Relativity

9.1 Relativity principle

Problems

1. (20 points.) The relativity principle states that the laws of physics are invariant (or covariant) when
observed using different coordinate systems. In special relativity we restrict these coordinate systems to
be uniformly moving with respect to each other. Let 2 = 2/ = 0 at t = 0.

(a) Linear: Spatial homogeneity, spatial isotropy, and temporal homogeneity, require the transformation
to be linear. (We will skip this derivation.) Then, for simplicity, restricting to coordinate systems
moving with respect to each other in a single direction, we can write

2l = A(v)z + B(v)t, (9.1a)
t' = E()z+ F(v)t. (9.1b

We will refer to the respective frames as primed and unprimed.

(b) Identity: An object P at rest in the primed frame, described by 2z’ = 0, will be described in the

unprimed frame as z = vt.
/
t t <P
v
z 2!

Figure 9.1: Identity.

Using these in Eq. (9.1a), we have
0= A(v)vt + B(v)t. (9.2)

This implies B(v) = —vA(v). Thus, show that

2= A(w) (z — vt), (9.3a)
t' = EW)z+ F(v)t. (9.3b)

(¢) Reversal: The descriptions of a process in the unprimed frame moving to the right with velocity v
with respect to the primed should be identical to those made in the unprimed (with their axis flipped)

81
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Figure 9.2: Reversal.

moving with velocity —v with respect to the primed (with their axis flipped). This is equivalent to
the requirement of isotropy in an one dimensional space.

That is, the transformation must be invariant under

z—= -z, 2= =2, v — —u. (9.4)

This implies
-2 = A(=v) (=2 + vt), (9.5a)
t' = —E(-v)z+ F(-v)t. (9.5b)

Show that Egs. (9.3a) and (9.5a) in conjunction imply

(d) Reciprocity: The description of a process in the unprimed frame moving to the right with velocity v
is identical to the description in the primed frame moving to the left.

! !/
t t <P 4 t <P
v, , U
z z z z

Figure 9.3: Reciprocity.

That is, the transformation must be invariant under

(z,t) = (2',t) (' t) = (2,t) v— —v. (9.8)

Show that this implies
z = A(—v) (2’ +ot'), (9.9a)
t = E(—v)z + F(-v)t. (9.9b)

Show that Egs. (9.3) and Egs. (9.9) imply
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(e) Together, for arbitrary A(v), show that the relativity principle allows the following transformations,

2= Aw) (= — ob), (9.11a)
= A) [% (A(i)Q - 1) z—l—t] . (9.11b)

i. In Galilean relativity we require ¢’ = ¢. Show that this is obtained with

Alv) =1 (9.12)

in Egs. (9.11). This leads to the Galilean transformation
2=z —wt, (9.13a)
t'=t. (9.13b)

ii. In Finstein’s special relativity the requirement is for a special speed ¢ that is described identically
by both the primed and unprimed frames. That is,

z = ct, (9.14a)
Y= ct'. (9.14b)
Show that Egs. (9.14) when substituted in in Eqs. (9.11) leads to
Alv) = ———. (9.15)
This corresponds to the Lorentz transformation
2= A(v)(z — vt), (9.16a)
= A(v) (—C%z+t) . (9.16b)

iii. This suggests that it should be possible to contrive additional solutions for A(v) that respects
the relativity principle, but with new physical requirements for the respective choice of A(v).
Construct one such transformation. In particular, investigate modifications of Egs. (9.14) that
donot change the current experimental observations. The response to this part of the question
will not be used for assessment.

9.2 Lorentz transformation

Problems

1. (20 points.) The Lorentz factor
1 v
e —— = —. 9-17
(a) Evaluate v for v = 30m/s (~ 70miles/hour).
(b) Evaluate v for v = 3¢/5.

2. (20 points.) Lorentz transformation describing a boost in the z-direction is obtained using the matrix

v Bvy00
3 00
L= 073 Lol (9.18)

0 001
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(a) Show that the determinant of the matrix L is 1.
(b) Determine L~1.

3. (20 points.) Lorentz transformation (in one dimension) is given by

Az = y(Az —vAb), (9.19a)
A

At = (At - 3—2) , (9.19h)
¢ c

where v = /1 — v2/c2. Show that for
Az
d — 2
R an A7 < (9.20)

one obtains the Galilean transformation

Az = Az — vAt, (9.21a)
At = At. (9.21b)

Note: For the case when Az and At represent the change in position and time of a particle we could have
v and Az/At to be identical.

. (20 points.) How does the wave equation

? 1
<@ - é@) flz—ct) =0 9.22)

transform under the Lorentz transformtion

2= vz + Bret, (9.23a)
ct' = Byz + yet. (9.23b)
Solution:
0? 1 02
where a = /(1 — 8)/(1 + B).
. (20 points.) Verify the following:
TrA = A (9.25a)
detA = Eilig...inAil 1Ai22 . Al"n (925b)
1 Y4 -/ . . .
= H‘gilizmin81112.“%’4“ i Alzié Ce AZ"%, (925C)

where n is the dimension of the matrix A.

. (20 points.) Prove that any orthogonal matrix R satisfying

RRT =1 (9.26)

in N-dimensions has N(N — 1)/2 independent variables.
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7. (20 points.) Lorentz transformation describing a boost in the z-direction, y-direction, and z-direction,

are
M P11 00 72 0 =By 0 v3 00 —fB373
| =Bm m 00 _ 0 1 0 0 _ 0 10 0
L= 0 0 10| T2~ —Bav2 0 v 0] Ls = 0 01 0 ’
0 0 01 0 0 0 1 —B3v3 00 3

respectively. Transformation describing a rotation about the z-axis, y-axis, and z-axis, are

10 0 0 1 0 0 0 1 0 0 0

Ry — 01 0 0 R, — 0 cosws 0 —sinws R — 0 cosws sinwsg 0
! 00 cosw; sinw; |7 72 0 0 1 0 s 0 —sinws cosws 0
0 0 —sinwy coswy 0 sinws 0 cosws 0 0 0 1

respectively. For infinitesimal transformations, 8; = §3; and w; = dw; use the approximations
¥ ~ 1, cosw; ~ 1, sinw; ~ dw;,
to identify the generator for boosts N, and the generator for rotations the angular momentum J,
L=1+0/8-N and R=1+dw-J,

respectively. Then derive
[N17N2} = N1N3 — NaNy = Js.

This states that boosts in perpendicular direction leads to rotation. (To gain insight of the statement,

calculate [J1, Jo] and interpret the result.)

(a) Is velocity addition commutative?
(b) Is velocity addition associative?

(¢) Read a resource article (Wikipedia) on Wigner rotation.
8. (20 points.) (Based on Hughston and Tod’s book.) Prove the following.

(a) If p* is a time-like vector and pts, = 0 then s* is necessarily space-like.

(b) If p* and ¢* are both time-like vectors and pfq, < O then either both are future-pointing or both

are past-pointing.
(c) If p* and ¢* are both light-like vectors and p*q, = 0 then p* and ¢* are proportional.
(d) If p* is a light-like vector and pts, = 0, then s* is space-like or p* and s/ are proportional.

(e) If u®, v*, and w®, are time-like vectors with u®v, < 0 and v*w, < 0, then w*u, < 0.
9. (20 points.) Non-relativistic limits are obtained for § < 1 in relativistic formulae.

(a) Does Lorentz transformation recover Galilean transformation for 5 < 1?

(b) Does Lorentz transformation recover Galilean transformation for f < 1 and ¢ — co?

9.3 Geometry of Lorentz transformation

1. (20 points.) A four-vector in the context of Lorentz tranformation can be described using the notation

a® = (a°,a',a?, da®).



86 CHAPTER 9. SPECIAL RELATIVITY

Let
b = (b°,b1, 0%, 0%) (9.33)

be another four-vector. The scalar product between two Lorentz vectors is given by
a®be = —a®b? 4 a'b' 4 a®b*® + a®b>. (9.34)
The square of the ‘length’ of the four-vector a® is given by
a“aq, (9.35)

which is not necessarily positive. The length of a four-vector is invariant, that is, it is independent of the
Lorentz frame. If two Lorentz four-vectors are orthogonal they satisfy

a“by = 0. (9.36)
Orthogonality is an invariant concept.

(a) Determine the length of
p* = (5,0,0,3), (9.37)
where the numbers are in arbitrary units. Is it time-like, light-like, or space-like?
(b) Find a four-vector of the form

¢® = (¢°,0,0,¢%) (9.38)

that is perpendicular to p®.

2. (20 points.) A hypothetical particle is observed by an inertial observer to be moving with non-uniform
superluminal speed (v > ¢) at every instant of time from remote past to remote future. Draw a plausible
world line of such a particle.

9.4 Poincaré (parallel) velocity addition formula

1. (20 points.) The Poincaré formula for the addition of (parallel) velocities is

Vg + Up
Vg Up

1+

v =

(9.39)

c2

where v, and vy are velocities and c is speed of light in vacuum. Jerzy Kocik, from the department of
Mathematics in SIUC, has invented a geometric diagram that allows one to visualize the Poincaré formula.
(Refer [2].) An interactive applet for exploring velocity addition is available at Kocik’s web page [1]. (For
the following assume that the Poincaré formula holds for all speeds, subluminal (v; < ¢), superluminal
(v; > ¢), and speed of light.)

(a) Analyse what is obtained if you add two subluminal speeds?

(b) Analyse what is obtained if you add a subluminal speed to speed of light?
(©)

(d) Analyse what is obtained if you add speed of light to another speed of light?
(e)

(f)

Analyse what is obtained if you add a subluminal speed to a superluminal speed?

Analyse what is obtained if you add a superluminal speed to speed of light?
f

Analyse what is obtained if you add two superluminal speeds?
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2.

9.5

(20 points.) The Poincaré formula for the addition of (parallel) velocities is, ¢ = 1,

v ot (9.40)
1+ v,vp
where v, and v, are velocities and c is speed of light in vacuum. Assuming that the Poincaré formula
holds for all speeds, subluminal (—1 < v; < 1), superluminal (|v;| > 1), and speed of light, analyse what
is obtained if you add a subluminal speed to a superluminal speed? That is, is the ‘sum’ subluminal or
superluminal. Is the answer unique?

. (20 points.) The Poincaré formula for the addition of (parallel) velocities is

Va + Up

1+ VaUp

(9.41)

v =

2
where v, and v, are velocities and ¢ is speed of light in vacuum. (For the following assume that the
Poincaré formula holds for all speeds, subluminal (v; < ¢), superluminal (v; > ¢), and speed of light.)
Analyse what is obtained if you add a subluminal speed to a superluminal speed? That is, is the resultant
speed subluminal or superluminal.

Hint: Analyse the case
Yo oS4y, (9.42)

(& Up
for infinitely small § > 0.

(20 points.) The Poincaré formula for the addition of (parallel) velocities is, ¢ = 1,

. Vg + Up

= — 9.43
v 14+ vavp’ ( )

where v, and v, are velocities and ¢ is speed of light in vacuum. Assuming that the Poincaré formula
holds for all speeds, subluminal (—1 < v; < 1), superluminal (|v;| > 1), and speed of light, analyse what
is obtained if you add a speed to an infinitely large superluminal speed, that is, v, — co. Hint: Inversion.

. (30 points.) Let

tanh 6 = (3, (9.44)
where 8 = v/c. Addition of (parallel) velocities in terms of the parameter 6 obeys the arithmatic addition
0 =04+ 6. (9.45)

(a) Invert the expression in Eq. (9.44) to find the explicit form of # in terms of 8 as a logarithm.
(b) Show that Eq. (9.45) leads to the relation

(29)- () (12)

(c) Using Eq. (9.46) derive the Poincaré formula for the addition of (parallel) velocities.

Kinematics

. (100 points.) Relativisitic kinematics is constructed in terms of the proper time element ds, which

remains unchanged under a Lorentz transformation,
—ds* = —c*dt* + dx - dx. (9.47)

Here x and ¢ are the position and time of a particle. They are components of a vector under Lorentz
transformation and together constitute the position four-vector

x* = (ct, x). (9.48)
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(a) Velocity: The four-vector associated with velocity is constructed as

dx®

¥ =c—. 9.49
u e— (9.49)
i. Using Eq. (9.47) deduce
1 d
~vds = cdt, where v = \/17——52’ 8= %, v = d_}t( (9.50)
Then, show that
u® = (¢y,vy). (9.51)
Here v is the velocity that we use in Newtonian physics.
ii. Further, show that
Uy = —c. (9.52)

Thus, conclude that the velocity four-vector is a time-like vector. What is the physical implication
of this statement for a particle?

iii. Write down the form of the velocity four-vector in the rest frame of the particle?

(b) Momentum: Define momentum four-vector in terms of the mass m of the particle as

(63

p* = mu® = (mey, mvy). (9.53)

Connection with the physical quantities associated to a moving particle, the energy and momentum
of the particle, is made by identifying (or defining)

Pt = (Em) : (9.54)

¢
which corresponds to the definitions

E = mc?y, (9.55a)
p = mv7y, (9.55b)

for energy and momentum, respectively. Discuss the non-relativistic limits of these quantities. In
particular, using the approximation

102
=1l4+-—=+... 9.56
v=EIrg st (9.56)
show that
1
E —mc* = imv2 +..., (9.57a)
Pp=mv+.... (9.57b)
Evaluate
Ppa = —m3ct. (9.58)
Thus, derive the energy-momentum relation
E% — p?c? = m2c. (9.59)

(¢) Acceleration: The four-vector associated with acceleration is constructed as

du®
¥ = c—. 9.60
a c T ( )
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i.

ii.

iii.

iv.

vi.

vii.

Show that p p
a_ @r Y
a® =~ (Cdt Vo +’ya) , (9.61)
where 4
v
= 9.62
a=— (9.62)

is the acceleration that we use in Newtonian physics.
Starting from Eq. (9.52) and taking derivative with respect to proper time show that

u®aq = 0. (9.63)

Thus, conclude that four-acceleration is space-like.
Further, using the explicit form of u®a, in Eq. (9.63) derive the identity

dry v-ay 4
— = . 9.64
dt ( c? )’Y ( )
Show that v.a vv-a
= (Yt g YR 55)
c c c

Write down the form of the acceleration four-vector in the rest frame (v = 0) of the particle as
(0,ap), where

ap = (9.66)

a|rest frame

is defined as the proper acceleration. Note that the proper acceleration is a Lorentz invariant
quantity, that is, independent of which observer makes the measurement.

Evaluate the following identities involving the proper acceleration

Can 2 2
a%a, = ag - ag = [a-a+(v—ca) 72] 7= [a-a— <an> ]76- (9.67)

c

In a particular frame, if v || a (corresponding to linear motion), deduce
|ao| = |al~”. (9.68)

And, in a particular frame, if v | a (corresponding to circular motion), deduce

|ao| = |a+*. (9.69)
Force: The force four-vector is defined as
dp® v dE
o _ . F 9.70
! ¢ ds (c dt’ 7) ’ ( )
where the force F, identified (or defined) as
dp
F=— 9.71
L3 (9.71)

is the force in Newtonian physics. Starting from Eq. (9.58) derive the relation

dE

—=Fov (9.72)

which is the power output or the rate of work done by the force F on the particle.
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(e) Equations of motion: The relativistic generalization of Newton’s laws are
f4=ma®. (9.73)

Show that these involve the relations, using the definitions of energy and momentum in Egs. (9.55),

d .
F = d_It) = may + mvvc—2a~y?’, (9.74a)
dE
e F.-v=mv-ay. (9.74b)

Discuss the non-relativistic limits of the equations of motion.

2. (20 points.) Lorentz transformation relates the energy E and momentum p of a particle when measured

in different frames. For example, for the special case when the relative velocity and the velocity of the

particle are parallel we have
E'fe 2 ﬁ7> (EVC)
= . 9.75
(ﬂ) (Mv P (9.75)

Photons are massless spin 1 particles whose energy and momentum are £ = Aw and p = hk, such that
w = ke. Thus, derive the relativistic Doppler effect formula

W =w % (9.76)

Contrast the above formula with the Doppler effect formula for sound.

. (20 points.) Neutral 7 meson decays into two photons. That is,

0 — Y1+ 7Y2. (9.77)

Energy-momentum conservation for the decay in the laboratory frame, in which the meson is not neces-
sarily at rest, is given by
Pz =pi +p3- (9.78)

(Z0)- (20)- (20)

where F,; and p are the energy and momentum of neutral 7 meson, and F;’s and p;’s are the energies
and momentums of the photons. Thus, derive the relation

Or, more specifically,

m2ct = 2B, FEy(1 — cos6), (9.80)

where m is the mass of neutral m meson, and 6 is the angle between the directions of p; and pa.

. (20 points.) Using Maxwell’s equations we can show that a monochromatic electromagnetic wave has

the electromagnetic energy density U and electromagnetic momentum density G given by

1 1
U= §£%E2 + §M3H2 =e2E? = uiH?, (9.81)
ExH .U

Observe that are densities. The energy and momentum densities do not transform like a four-vector,

instead they are part of a four-tensor,
o cU, S
tﬁ_<§GCT>. (9.83)

Note: Complete this!
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5. (20 points.) Length contracts and time dilates. That is,

L
L==2  T=Ty, (9.84)
v

where Lo and Ty are proper length and proper time. Similarly, show that (for v || a)
|ao|
|a| = 3
~3
where |ag| is the proper acceleration measured in the instantaneaous rest frame of the particle. Further,
for v 1 a show that

(9.85)

|ao|
. (20 points.) Time dilates. That is,
1

V=
V-

where Tj is the proper time measured in the instantaneous rest frame of the clock measuring Ty and
T is the time measured by a clock moving with velocity v relative to the clock measuring proper time.
Similarly, show that (for v || a)

T =Ty, (9.87)

= 20l

7

where |ag| is the proper acceleration measured in the instantaneous rest frame of the particle. Derive the

equation for the trajectory of a particle moving in a straight line (along the z axis) with constant proper
acceleration, after starting from rest from the point 2z = ¢?/|ag| at time ¢ = 0.

(9.88)

9.6 Dynamics

9.6.1 Charge particle in a uniform magnetic field: Circular motion

1. (20 points.) A relativisitic particle in a uniform magnetic field is described by the equations

dE
e F-v, (9.89a)
dp
— =F 9.89b
P _w (9.89)
where
E = mc®y, (9.90a)
p = mvy, (9.90b)
and
F =¢qv x B. (9.91)
Show that J
g
— =0. 9.92
o (9.92)
Then, derive
d
d—‘t' =V X w,, (9.93)
where B
R (9.94)
my

Compare this relativistic motion to the associated non-relativistic motion.
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2. (20 points.) If the motion of a non-relativistic particle is such that it does not change the kinetic energy

of the particle, we have

Show that this imples

(9.95)

(9.96)

This is achieved when the acceleration a = 0 or in the case of uniform circular motion. Starting from
Eq. (9.96) show that the relativistic generalization of kinetic energy E = mc?y is also conserved, that is,

Observe that

T d

d
7 (mc*y) = 0.

i(BQ):_ldl 1 dvy

2 2dty2 A3 dt

9.6.2 Charge particle in a uniform electric field: Hyperbolic motion

1. (20 points.) A relativisitic particle in a uniform electric field is described by the equations

where

and

dE

— _F.

dt v

dp

I,

dt ’

E = mc?y,

p = mv7y,
F =¢qE.

Let us consider the configuration with the electric field in the y direction,

and initial conditions

(a) In terms of the definition

E=Fy,
v(0) = 0%+ 0y + 0%,
x(0) = 0%+ yo ¥ + 02
1 qE
wo=——",
cm

show that the equations of motion are given by

and

dy
E—“’O'ﬁ

d
a(ﬁ”ﬂ = wo.

(9.97)

(9.98)

(9.99a)

(9.99b)

(9.100a)
(9.100Db)

(9.101)

(9.102)

(9.103a)
(9.103b)

(9.104)

(9.105)

(9.106)
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(b)

Since the particle starts from rest show that we have

By = wot. (9.107)

For our configuration this implies
Bs =0, (9.108a)
Byy = wot, (9.108b)
B: = 0. (9.108¢)

Further, deduce
t

By = —— (9.109)

\/l—l—w?)tQ.

Integrate again and use the initial condition to show that the motion is described by

v == [rvaae-1]. ©.110)
wo

Rewrite the solution in the form

2 2
(y—yo+i> —r =2 (9.111)
wo

- 2
wo

This represents a hyperbola passing through y = yg at ¢t = 0. If we choose the initial position
Yo = ¢/wp we have
y? — 22 =yl (9.112)

The (constant) proper acceleration associated with this motion is

CQ

a=wpec=—. (9.113)
Yo
A Newtonian particle moving with constant acceleration « is described by equation of a parabola

1

Y—Yo = §Qt2. (9.114)
Show that the hyperbolic curve
242
y=yoy/1+ (9.115)
Yo
in regions that satisfy
wot K 1 (9.116)
is approximately the parabolic curve
L o
y:yo+§o¢t +... (9.117)

2. (20 points.) The path of a relativistic particle moving along a straight line with constant (proper)
acceleration « is described by equation of a hyperbola

2

22— Ptr =23, 20 = <. (9.118)
a
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Figure 9.4: Problem 2

(a) This represents the world-line of a particle thrown from z > 2y at t < 0 towards z = zp in region
of constant (proper) acceleration a as described by the bold (blue) curve in the space-time diagram
in Figure 2. In contrast a Newtonian particle moving with constant acceleration « is described by
equation of a parabola

1
z—2= §ozt2 (9.119)

as described by the dashed (red) curve in the space-time diagram in Figure 2. Show that the

hyperbolic curve
/ c2t?
= 14+ — 9.120
z2=204/1+ p ( )

in regions that satisfy

c
t< = (9.121)
«
is approximately the parabolic curve
L
Z:Zo+§0¢ +... (9.122)

(b) Recognize that the proper acceleration o does not have an upper bound.

(c) A large acceleration is achieved by taking an above turn while moving very fast. Thus, turning
around while moving close to the speed of light ¢ should achieve the highest acceleration. Show that
a — oo corresponding to zg — 0 represents this scenario. What is the equation of motion of a particle
moving with infinite proper acceleration. To gain insight, plot world-lines of particles moving with
a=c?/z, a =10c%/z, and a = 100¢?/ 2.

3. (20 points.) The path of a relativistic particle moving along a straight line with constant (proper)
acceleration « is described by the equation of a hyperbola

2
22— *t? =23, z0 = —. (9.123)
o

This is the motion of a particle ‘dropped’ from z = 2 at ¢ = 0 in region of constant (proper) acceleration.
See Figure 3. Using geometric (diagrammatic) arguments might be easiest to answer the following.
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ct

20

Figure 9.5: Problem 3

(a) Will a photon dispatched to ‘chase’ this particle at ¢ = 0 from z = 0 ever catch up with it? If yes,
when and where does it catch up?

(b) Will a photon dispatched to ‘chase’ this particle at t = 0 from 0 < z < 2 ever catch up with it? If
yes, when and where does it catch up?

(¢) Will a photon dispatched to ‘chase’ this particle, at t = 0 from z < 0 ever catch up with it? If yes,
when and where does it catch up?

What are the implications for the observable part of our universe from this analysis?

4. (20 points.) The path of a relativistic particle moving along a straight line with constant (proper)
acceleration g is described by the equation of a hyperbola

2
24(t) = /22 + 22, 20 = Cg (9.124)

This is the motion of a particle that comes to existance at z; = 400 at t = —oo, then ‘falls’ with constant
(proper) acceleration g. If we choose 4(0) = 0 and y,(0) = 0, the particle ‘falls’ keeping itself on the
z-axis, comes to stop at z = zp, and then returns back to infinity. Assume you are positioned at the origin.
If the particle is a source of light (imagine a flash light) at what time will the light first reach you at the
origin? Where is the particle when this happens?

5. (20 points.) The path of a relativistic particle moving along a straight line with constant (proper)
acceleration g is described by the equation of a hyperbola

2
2o(t) = /22 + 22, 0= (9.125)
g

This is the motion of a particle that comes to existance at zo = +00 at ¢ = —oo, then ‘falls’ with constant
(proper) acceleration g. If we choose z2(0) = 0 and y2(0) = 0, the particle ‘falls’ keeping itself on the
z-axis, comes to stop at z = zp, and then returns back to infinity. Another particle is at rest at z;

Zl(t) = Z1, (9126)
such that 0 < z1 < zg. Assume that both particles emit photons continuously.

(a) At what time do photons emitted by 2 first reach 1?7 Where is particle 2 when this happens?
(b) At what time is the last photon that reaches 2 emitted by 1?7 Where is particle 2 when this happens?
(¢) Do all the photons emitted by 1 reach 2?
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(d) Do all the photons emitted by 2 reach 17

6. (20 points.) The path of a relativistic particle 1 moving along a straight line with constant (proper)
acceleration g is described by the equation of a hyperbola

2
A(t) = /2 422, = —. (9.127)
9

This is the motion of a particle that comes to existance at z; = 400 at ¢ = —o0o, then ‘falls’ with constant
(proper) acceleration g. If we choose z4(0) = 0 and y4(0) = 0, the particle ‘falls’ keeping itself on the
z-axis, comes to stop at z = 2y, and then returns back to infinity. Consider another relavistic particle 2
undergoing hyperbolic motion given by

2
() = =/ + 22, = —. (9.128)
9

This is the motion of a particle that comes to existance at zo = —o0 at ¢ = —oo, then ‘falls’ with constant
(proper) acceleration g. If we choose z4(0) = 0 and y4(0) = 0, the particle ‘falls’ keeping itself on the
z-axis, comes to stop at z = —zp, and then returns back to negative infinity. The world-line of particle 1

is the blue curve in Figure 6, and the world-line of particle 2 is the red curve in Figure 6. Using geometric
(diagrammatic) arguments might be easiest to answer the following. Imagine the particles are sources of
light (imagine a flash light pointing towards origin).

—— —— >
—20 20
ct
zo(t) 21 (t)
z
—Zz 20

Figure 9.6: Problem 6

(a) At what time will the light from particle 1 first reach particle 2?7 Where are the particles when this
happens?

(b) At what time will the light from particle 2 first reach particle 17 Where are the particles when this
happens?

(c¢) Can the particles communicate with each other?

(d) Can the particles ever detect the presence of the other? In other words, can one particle be aware

of the existence of the other? What can you deduce about the observable part of our universe from
this analysis?

7. (20 points.) Two masses (one heavier than the other) move with constant proper acceleration «, after
they are dropped from position 29 = ¢?/a. Does the time taken to fall a given distance depend on mass?
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Recall that Aristotle (384-322 BC) presumed that the time taken to fall a given distance depended on
mass. Galileo (1564-1642) argued, based on a famous thought experiment (refer Wikipedia) that the time
taken to fall a given distance is independent of mass.

(a) Consider an electron and a proton connected by a hypothetical string. What is the tension in the
string when they move in a uniform electric field (which leads to proper acceleration). We will have
to dictate how the distance between them changes.

(b) What about charges of different masses in an electric field?
(¢) What about a hydrogen atom? How does electrostatic energy associated to the hydrogen atom fall?
(d) Do these considerations involve a Poincare stress?

Keywords: Trouton-Noble experiment, Laue current, 4/3 problem.

NOTE: This problem needs thought and scrutiny!

9.6.3 Charge particle in a uniform electric field with an initial velocity normal to
electric field: Hyperbolic motion

1. (20 points.) A relativisitic particle in a uniform electric field is described by the equations

dE

e F-v, (9.129a)

dp

— =F 9.129b

P_w (9.1290)
where

E = mc®y, (9.130a)

P = mv7y, (9.130Db)
and

F =qE. (9.131)

Let us consider the configuration with the electric field in the y direction,

E=FEy, (9.132)

and initial conditions
v(0) = vox+0y+01z, (9.133a)
x(0) = o X+ Yoy + 20 2. (9.133D)

We will use the associated definitions By = v(0)/c and vo = 1/+/1 — 53.

(a) In terms of the definition
E
o =wpe =, (9.134)
m
show that the equations of motion are given by
dy

—r=wo (9.135)

and J
a(ﬁ”ﬂ = wo. (9.136)
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For our configuration show that
By = wot + BovoX, (9.137)
such that
Bey = Boo, (9.138a)
Byy = wot, (9.138b)
8.y = 0. (9.138¢)
Using 8.7 = 0, learn that
62
= =0 9.139
[= P2 - B} - P2 (9:139)
and in conjunction with 8,y = Bpyo deduce that
B.=0 (9.140)
and )
— 48 =1 (9.141)
0
Thus, deduce
72 = wit? + 2 (9.142)
and
ﬂ2
B2+8. =05+ (9.143)
Y0
Further, deduce
B, = L (9.144)
YT '
and
fo=—L (9.145)
V1 +@gt?
where w
Wy = =2, (9.146)
7o
Integrate again and use the initial condition to show that the motion is described by
-z = 2 ginh~ @yt (9.147a)
Wo
Yy—yo = < [\/1 + wit? — 1] ) (9.147D)
Wo
z—zp = 0. (9.147¢)
Show that for vg = 0 we reproduce the solution for a particle starting from rest. Next, for
wot < 1 (9.148)
and
o = wyc (9.149)
obtain the non-relativistic limits,
x —xo = vot, (9.150a)
1
Y=o = zat’, (9.150b)

z—2zp = 0. (9.150¢)
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Hint: Recall the series expansion
sinhfllen(;v—i— ;v2+1>:;v+.... (9.151)

(d) For the choice of initial position,

o = O, Yyo=—=—", zZ0 = 0, (9152)
wo «
show that the trajectory is a catenary,
y = yo cosh (ﬂx) . (9.153)
Vo
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Chapter 10

Lorentz covariance of electrodynamic
quantities

10.1 Maxwell equations

1. In terms of the four-vector potential

cA* = (¢,cA) (10.1)
the Maxwell field tensor F),,, is defined as
F,, =0,A,-0,A,. (10.2)
Note that, by construction, the field tensor is antisymmetric. Recall,
10
o=-=,V). 10.3
(c 2 ) (10.3)
Using the expression for the electric and magnetic field in terms of the potentials,
E=-V¢ 0 A (10.4a)
B ot '
B=VxA, (10.4b)
in Eq. (10.2), recognize
CFOi = —Ei (105)
and
Fij = EijkBk. (106)

The tensor structure is more explicitly visualized in the form

0 —-E; —Ey —Ej
El 0 CB3 —CBQ

CF‘LW - E2 —CBg 0 CBl (107)
E3 CBQ —CB1 0
2. In terms of the four-current
j* = (ep,J), (10.8)
show that the inhomogeneous Maxwell equations,
V - gE = p, (10.9a)
9]
VxH-— aaoE =j, (10.9b)
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where B = poH, are summarized in the covariant equation

DpFP = poj®. (10.10)

. Show that

Da0sFF =0, (10.11)

using the antisymmetry of the field tensor. Thus, derive
07" =0, (10.12)

and recognize it as the statement of conservation of charge,

Ip
— -j=0 10.13
5 V=0, ( )
in covariant form.
. The dual Maxwell field tensor is defined as
- 1
o= 55“”0‘/3Fa5, (10.14)

where the total antisymmetrical tensor of the fourth rank is normalized to

g2 = 41, (10.15)
Show that
Fy; = —B; (10.16)
and
Fyj = —einE". (10.17)

The dual field tensor is more explicitly visualized in the form

0 —CB1 —CBQ —CBg
~ . CBl 0 —E3 E2
Fw=\ (g B 0 -B | (10.18)

CB3 —E2 E1 0

Using antisymmetry derive
g FP =0 (10.19)

and show that it summarizes the homogeneous Maxwell equations,

V-B =0, (10.20a)
B
V x E + 8— =0, (10.20Db)
ot
in covariant form.
. Show that
—j%Aa=pp—j- A, (10.21)

and recognize this as the electrodynamic interaction energy in covariant form.
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6. In terms of the four-velocity

and four-momentum

show that the covariant Lorentz force equation is

—— = qF*Pug.
ds ¢ ue
In particular, show that

dE

= _F.

dt v

dp

LT _F

dt ’

where
F =q¢E + qv x B.
10.2 Conservation equations

Show that
F* 45, + 0,th" = 0.

Identify the energy-momentum stress tensor
t = FFAEYy 4 g"v L,

where )
L=— 1 FrE,,.

10.3 Lorentz invariant constructions
1. (20 points.) In terms of the four-vector potential
cA* = (¢,cA)
the Maxwell field tensor F},,, is defined as
F,, =0,A, —0,A,,
and the corresponding dual tensor is defined as

a2 1 va
P = oet PFup.
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(10.22)

(10.23)

(10.24)

(10.25a)

(10.25b)

(10.26)

(10.27)

(10.28)

(10.29)

(10.30)

(10.31)

(10.32)

Derive the following relations, which involve quantities that remain invariant under Lorentz transforma-

tions.

2 v
c“FME,,

FAFFE,, = 4cB-E,

2(c*B? — E?).
AF™E,, = —2(c*B* - E%).

(10.33a)
(10.33b)
(10.33¢)
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2. (20 points.) Eigenvalues of the energy momentum tensor. (If we choose ¢ = 1, which is easily undone

by replacing E — %E everywhere.)

(a) Using
0 —E, —FE> —Ej3
o El 0 CB3 —CBQ
Fw=\|E —eBy 0 cB
E3 CBQ —CBl 0
and 1
FMU = QEHVO[BFOL[}
derive
cF*McFy, = 6*,E - ¢B,
cFP\cFy, — cFFCFy, = 5", (*B? — E?).
(b) Define
E? B?
EZEO —— and G =¢E- B,
2 240
such that

—250c¢?L = *B?> — E? and poc’G =E - ¢B.

Thus, construct matrix (or dyadic) equations

FF:,uOgla
F-F-F-F

= _2,UJ0‘C17

in terms of matrices (or dyadics) F and F.

(¢) Show that the eigenvalues A of the field tensor F/, /g satisfy the quartic equation
M =200 - G2 =0.

(d) Evaluate the eigenvalues to be £A; and +\y where

M=\ L—-VL+ G2
Ao =\ L+ L2+ G2

3. (20 points.) The eigenvalues A of the field tensor F'*¥/, /g satisty the quartic equation
M =203 -G =0

in terms of ) )

E B
502 2 and G=eE-cB,
2 210

L

such that
—2u0c’L = *B? — E? and jpoc’G =E - ¢B.

(a) Evaluate the eigenvalues to be £); and +\; where

AN o=\ L—VL2+G2
Ay = \/E-i- VvV L2+ G2,

(10.34)

(10.35)

(10.36a)
(10.36b)

(10.37)

(10.38)

(10.39a)
(10.39b)

(10.40)

(10.41a)

(10.41b)

(10.42)

(10.43)

(10.44)

(10.45a)

(10.45b)
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(b) In terms of the complex field
_E+icB

cX 10.46
7 (10.46)
show that 1
Z=—X-X=L+1G (10.47)
Ho
and
Z* =L —ig. (10.48)
Then, express the eigenvalues as
A 1
—— =+— (VL+iGEVL—-iG). 10.49
o V2 ( ) (1049)

Hint: Substitute Z = Re®.
(¢) Show that

i. if ?2B? — E? = 0, then the eigenvalues are +1/G and +i\/G.
ii. if E-¢B = 0, then the eigenvalues are 0, 0, and +v/2L.
(d) Is the following true?

i. There is no Lorentz transformation connecting two reference frames such that the field is purely

magnetic in origin in one and purely electric in origin in the other.

ii. If ¢2B? — E? > 0 in a frame, then there exists a frame in which the field is purely magnetic.
iii. If ¢2B? — E? < 0 in a frame, then there exists a frame in which the field is purely electric.
iv. If ¢2B2 — E? = 0 in a frame, then it is so in every frame.

v. E-¢B > 0 in a frame, then there exists a frame in which the fields are parallel.

vi. E-¢B < 0 in a frame, then there exists a frame in which the fields are antiparallel.

vii. E-cB =0 in a frame, then it is so in every frame.
viii. An electromagnetic plane wave is characterized by ¢?B? — E2 =0 and E - cB = 0.

4. (40 points.) The electric and magnetic fields transform under a Lorentz transformation (for boost in z
direction) as

El(x',t") = v Ey(r,t) + By cBy(r,t),(10.50a) cBL(x',t') = veBy(r,t) — By Ey(r,t), (10.51a)
cB;(r’,t') = By Ey(r,t) + v cBy(r,t),(10.50b) E;(r',t’) = —BvcBy(r,t) + v E,(r,t),(10.51b)
EL(x',t') = E,(r,t) (10.50c) cB.(r',t') = ¢B,(r,t), (10.51c)

where 8 = v/c and v = 1/4/1 — 2. The transformed values of the coordinates and the fields are distin-
guished by a prime. Derive the invariance properties

E'(v,t)-B'(r',t') = E(r,t) - B(r,t) (10.52)

and
E'(r',t')* — B/ (v, t')? = E(r,t)? — *B(r, ). (10.53)

5. (20 points.) Let an infinitely thin plate occupying the y = 0 plane consist of a uniform charge density
flowing in the % direction described by drift velocity 84 = v/c.

(a) Show that the electric and magnetic field for this configuration is given by

g
E — g — 10.54
n(y)y 2o ( a)

B = n(y) zBaFE, (10.54b)
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where
1, y>0,
= 10.55
Thus, we have
cB = B4F. (10.56)

Recall that the motion of a point charge in this field configuration is a cycloid,

x(t) — vyt = Rsinwet, (10.57a)
y(t) — R = Rcosw.t, (10.57b)
that satisfies ) )
[z(t) — vgt]” + [y(t) — R]” = R?, (10.58)
where 5 B
q v
We=-"—, U= 5 and R:w—i. (10.59)
Show that under a Lorentz transformation (for boost in z direction) the electric and magnetic fields
transform as
E =yFE, (10.60a)
cB' = 2z B'n(y), (10.60b)
where
E' = ~(FE — cB), (10.61a)
c¢B' = v(¢B - BE). (10.61b)
Verify that
E” — (¢B)? = E? — (¢B)? (10.62)
and
E B =E-B=0. (10.63)
Verify that for § = 84 < 1 we have B’ = 0 and E’ = E/~4. Investigate what happens to the radius

R and the pitch of the cycloid 27 R in this case.
Note that for 8 = E/(cB) > 1 we have B’ = B/~ and E’ = 0. Investigate what happens.
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