

Homework No. 03 (Spring 2026)

PHYS 520B: ELECTROMAGNETIC THEORY

Department of Physics, Southern Illinois University–Carbondale

Due date: Thursday, 2026 Feb 05, 4.30pm

1. (20 points.) The Green function for a wave equation is

$$-\left(\nabla^2 - \frac{1}{c^2} \frac{\partial^2}{\partial t^2}\right) G(\mathbf{r} - \mathbf{r}', t - t') = \delta^{(3)}(\mathbf{r} - \mathbf{r}')\delta(t - t'). \quad (1)$$

(a) Let $\mathbf{r}' = 0$ and $t' = 0$. Then, Fourier transform in time to obtain

$$-\left(\nabla^2 + \frac{\omega^2}{c^2}\right) G(\mathbf{r}; \omega) = \delta^{(3)}(\mathbf{r}), \quad (2)$$

for a particular mode of frequency ω .

(b) Integrate around the source at \mathbf{r}' to obtain the continuity condition

$$\lim_{r \rightarrow 0} (4\pi r^2) \hat{\mathbf{r}} \cdot \nabla G = -1. \quad (3)$$

(c) Integrate the angular part, use spherical symmetry, to express the differential equation as

$$-\left(\frac{1}{r^2} \frac{\partial}{\partial r} r^2 \frac{\partial}{\partial r} + \frac{\omega^2}{c^2}\right) G(r; \omega) = \frac{\delta(r)}{4\pi r^2} \quad (4)$$

and rewrite the continuity condition in the form

$$\lim_{r \rightarrow 0} r^2 \frac{\partial G}{\partial r} = -\frac{1}{4\pi}. \quad (5)$$

(d) In the static limit, $\omega \rightarrow 0$, the Green function reduces to

$$\lim_{\omega \rightarrow 0} G(r; \omega) = \frac{1}{4\pi r}. \quad (6)$$

Thus, define $g(r; \omega)$ using

$$G(r; \omega) = \frac{g(r; \omega)}{4\pi r} \quad (7)$$

and show that it satisfies the differential equation

$$-\left(\frac{d^2}{dr^2} + \frac{\omega^2}{c^2}\right) g(r; \omega) = \frac{\delta(r)}{r} \quad (8)$$

with continuity condition

$$\lim_{r \rightarrow 0} g(r; \omega) = 1. \quad (9)$$

(e) Solve for $g(r; \omega)$ and find

$$g(r; \omega) = Ae^{i\frac{\omega}{c}r} + Be^{-i\frac{\omega}{c}r} \quad (10)$$

with the constraint

$$A + B = 1. \quad (11)$$

Thus, show that

$$G(\mathbf{r} - \mathbf{r}'; \omega) = \frac{Ae^{i\frac{\omega}{c}|\mathbf{r} - \mathbf{r}'|}}{4\pi|\mathbf{r} - \mathbf{r}'|} + \frac{Be^{i\frac{\omega}{c}|\mathbf{r} - \mathbf{r}'|}}{4\pi|\mathbf{r} - \mathbf{r}'|}. \quad (12)$$

Fourier transform to show that

$$G(\mathbf{r} - \mathbf{r}', t - t') = \frac{A\delta(t - t' - \frac{1}{c}|\mathbf{r} - \mathbf{r}'|)}{4\pi|\mathbf{r} - \mathbf{r}'|} + \frac{B\delta(t - t' + \frac{1}{c}|\mathbf{r} - \mathbf{r}'|)}{4\pi|\mathbf{r} - \mathbf{r}'|}. \quad (13)$$

Requiring the Green function to be causal, that is, $t > t'$, show that $A = 1$ and $B = 0$.